Development of 12 Chloroplast Microsatellite Markers in Vigna unguiculata (Fabaceae) and Amplification in Phaseolus vulgaris

Authors: Pan, Lei, Li, Yi, Guo, Rui, Wu, Hua, Hu, Zhihui, et al.

Source: Applications in Plant Sciences, 2(3)

Published By: Botanical Society of America

URL: https://doi.org/10.3732/apps.1300075

BioOne Complete (complete.BioOne.org) is a full-text database of 200 subscribed and open-access titles in the biological, ecological, and environmental sciences published by nonprofit societies, associations, Downloaded From: https://saging.pipone.org/journals/Applications-in-Plant-Sciences on 26 Dec 2024 Terms of Usu Septimental Sciences and Septimental Sciences on 26 Dec 2024

PRIMER NOTE

Development of 12 chloroplast microsatellite markers in Vigna unguiculata (Fabaceae) and amplification in Phaseolus vulgaris¹

Lei Pan^{2,3}, Yi Li^{2,3}, Rui Guo^{2,3}, Hua Wu^{2,3}, Zhihui Hu^{2,3}, and Chanyou Chen^{2,3,4}

²School of Life Sciences, Jianghan University, Wuhan 430056, Hubei, People's Republic of China; and ³Hubei Province Engineering Research Center of Legume Plants, Jianghan University, Wuhan 430056, Hubei, People's Republic of China

- *Premise of the study: Vigna unguiculata* is an economically important legume, and the complexity of its variability and evolution needs to be further understood. Based on publicly available databases, we developed chloroplast microsatellite primers to investigate genetic diversity within V. unguiculata and its related species *Phaseolus vulgaris*.
- *Methods and Results:* Twelve polymorphic chloroplast microsatellite markers were developed and characterized in 62 *V. unguiculata* individuals. The number of alleles per locus varied between two and four, the unbiased haploid diversity per locus ranged from 0.123 to 0.497, and the polymorphism information content varied from 0.114 to 0.369. In cross-species amplifications, nine of these markers showed polymorphism in 29 *P. vulgaris* individuals.
- *Conclusions:* The newly developed chloroplast microsatellite markers exhibit variation in *V. unguiculata* as well as their transferability in *P. vulgaris.* These markers can be used to investigate genetic diversity and evolution in *V. unguiculata* and *P. vulgaris.*

Key words: chloroplast microsatellite; cross-amplification; Fabaceae; Phaseolus vulgaris; Vigna unguiculata.

Cowpea (Vigna unguiculata (L.) Walp.) (2n = 2x = 22), a legume crop of economic importance, is widely distributed in the arid and semiarid regions of Africa, Asia, Europe, Latin America, and some parts of the United States (Citadin et al., 2011). As a member of the legume family, it belongs to Phaseoleae, the same tribe as common bean (Phaseolus vulgaris L.). Compared to its close relatives and many other crop species, V. unguiculata shows a greater tolerance to drought and has the ability to fix nitrogen in poor soils (Muchero et al., 2009). Its grains are a major source of dietary protein for humans, and cowpea hay is fed to livestock as a nutritious fodder (Badiane et al., 2012). However, even though restriction fragment length polymorphism (RFLP), amplified fragment length polymorphism (AFLP), random amplified polymorphic DNA (RAPD), and simple sequence repeat (SSR) molecular makers have been developed for the cowpea nuclear genome, knowledge of variability and evolution in the chloroplast genome of V. unguiculata is limited at the molecular level (Provan et al., 2001; Xu et al., 2010).

Chloroplast microsatellite, or chloroplast simple sequence repeat (cpSSR), markers can be used to detect DNA variability in the chloroplast genome. They have the same characteristics

The authors thank Professor Zeng Chen (George Washington University, Washington, D.C., USA) for his suggestions and improvement to the English. This work was supported by the Wuhan Planning Project of Science and Technology (no. 2013021001010478, no. 201250499145-11) and by the Research Foundation for Talented Scholars of Jianghan University (no. 2012027), Hubei Province, People's Republic of China.

⁴Author for correspondence: ccy@jhun.edu.cn

doi:10.3732/apps.1300075

as nuclear microsatellites, including a multiallelic and codominant nature. Moreover, cpSSR markers are found to be polymorphic and transferable among related species because the flanking regions of cpSSR loci are conserved. Of particular importance, cpSSR markers are maternally inherited in most angiosperms, which allow monitoring of influence on population structure by seed-mediated gene flow and pollen flow (Provan et al., 2001). Therefore, they are useful for analysis of population genetics, genetic diversity, paternity analysis, and germplasm resource identification (Provan et al., 2001). In this study, we developed 12 cpSSR markers for V. unguiculata and evaluated their transferability to a related legume species, P. vulgaris. These results will be helpful for the future exploration and germplasm conservation in both V. unguiculata and P. vulgaris, although chloroplast microsatellite diversity in P. vulgaris has been investigated (Angioi et al., 2009; Desiderio et al., 2013).

METHODS AND RESULTS

The complete chloroplast genome sequence of *V. unguiculata* was downloaded from GenBank (GenBank accession no. NC_018051). The cpSSR loci distributed throughout the *V. unguiculata* chloroplast genome were screened using SSRHunter 1.3 software (Li and Wan, 2005). SSRs were selected based on the length of the core repeat motif (\geq 10 nucleotides), for example, five units of the core repeat motifs. Primer pairs were designed based on the flanking regions of each SSR locus using Primer3 (Rozen and Skaletsky, 2000). The parameters of each primer were set using the following criteria: (1) primer size of 20–24 nucleotides in length; (2) GC content of 40–60%; (3) annealing temperature between 50–60°C; and (4) expected amplicon size of 100–300 bp. In total, 15 cpSSR primer pairs of *V. unguiculata* were designed and synthesized (Sangon, Shanghai, China). Twelve of them showed polymorphic bands

Applications in Plant Sciences 2014 2(3): 1300075; http://www.bioone.org/loi/apps © 2014 Pan et al. Published by the Botanical Society of America. This work is licensed under a Creative Commons Attribution License (CC-BY-NC-SA).

¹Manuscript received 20 September 2013; revision accepted 5 December 2013.

TABLE 1. Characteristics of 12 polymorphic cpSSR ma	narkers developed in Vigna unguiculata.
---	---

Locus	Repeat motif		Primer sequences (5'–3')	$T_{\rm a}(^{\circ}{\rm C})$	Position ^a	Region	GenBank accession no.	Size range in V. unguiculata (bp)	Size range in <i>P. vulgaris</i> (bp)
VgcpSSR1	(TA) ₅	F:	GGTGGATGTTTATACCCAATCG	60	trnK-rbcL IGS	LSC	KF662476	190–220	190–196
		R:	TCTTTCTGCGATACAAACAAGAA						
VgcpSSR2	$(AAT)_5$	F:	TTTTCTATGTATGGCGCAACC	60	rbcL-atpB IGS	LSC	KF662477	180-190	186-190
		R:	CGGGGATAAAGCTGCCTATT						
VgcpSSR3	$(TA)_{12}$	F:	AAACCACTCGAATATTATGGAAA	57	ndhJ-trnF IGS	LSC	KF662478	185-305	265-355
		R:	CCAGTTCAAATCTGGTTCCTG						
VgcpSSR4	$(AT)_5$	F:	GAAAAGAACAAGCAAATCCACA	60	<i>ycf3</i> exon	LSC	KF662479	180-280	180-280
		R:	TGATCCTTACGATGCTTCCTTT						
VgcpSSR5	$(TA)_5$	F:	AGCCCACTTTTCCGTAGGTT	58	psaB-rps14 IGS	LSC	KF662480	190-202	190-202
		R:	CTTTTCCTTGCCATAATGGTT						
VgcpSSR7	$(TA)_6$	F:	TCAACCATTTCCCAACACCT	59	psbD-trnT IGS	LSC	KF662481	136-196	196
		R:	CATCGAGTTCATGGATTTGC						
VgcpSSR9	$(TA)_5$	F:	TGAAATTTGAAAAACGGGGTA	57	trnR-trnS IGS	LSC	KF662482	144-156	160
		R:	AAGCGATACGGATAGATTCCT						
VgcpSSR10	$(AT)_5$	F:	GGGCTCATTGGCTGTAGAAA	59	trnR-trnS IGS	LSC	KF662483	150-182	182-186
		R:	CCATCTCTCCCCAATTGAAA						
VgcpSSR11	$(AT)_6$	F:	TTTGAGAAGGTTCAATTGTTCG	59	petA-psbJ IGS	LSC	KF662484	168-186	168-170
		R:	TCGGACTCTAGGAAAGGACAA						
VgcpSSR12	$(AT)_6$	F:	GGCCATTTATCCCACTTTCC	56	psbJ-psbL-psbF IGS	LSC	KF662485	162-220	170-220
		R:	CCAGTCTCTACTGGGGGTTA						
VgcpSSR13	$(TA)_5$	F:	TATTGGTTTTGCACCAATCG	60	rpl20-rps12 IGS	LSC	KF662486	162-210	210
		R:	ACCAGGGTGTATGTGCGACT						
VgcpSSR14	$(AT)_5$	F:	TGGATCATAATCCTTGAACATCA	59	psaC-ndhE IGS	SSC	KF662487	162-210	178-180
		R:	TGCGAAAACAAAGATAAGAAATCA		-				

Note: IGS = intergenic spacer; LSC = long single-copy region; SSC = short single-copy region; T_a = annealing temperature.

^aPosition of each SSR in chloroplast complete genome of Vigna unguiculata (GenBank accession number: NC_018051).

in *V. unguiculata* accessions, two were monomorphic, and one primer pair gave no products. The 12 polymorphic markers were used in the following analysis.

A total of 91 samples were used in this study, including 62 V. unguiculata accessions and 29 P. vulgaris accessions (Appendix 1). All the samples were collected from an agricultural field in Anshan (30.46° N, 113.94'E), Caidian District, Wuhan City, and preserved in Hubei Province Engineering Research Center of Legume Plants, Wuhan, China. Tender young leaves of each sample were collected and stored at -80° C until use. Total DNA was extracted from all the samples using the cetyltrimethylammonium bromide (CTAB) method (Doyle and Doyle, 1987). The yield and purity of the DNA were measured using a spectro-photometer SP-1910UVPC (Shanghai, China) at an A260/A280-nm wavelength.

Characteristics of cpSSR markers were examined in both V. unguiculata and P. vulgaris. The same PCR conditions were applied in the two species. The PCR amplifications were performed in a 20- μ L reaction mixture containing 1× Taq buffer, 30 ng of genomic DNA, 1.5 mM MgCl₂, 200 µM dNTPs, 0.5 µM for each primer, and 0.5 U Taq polymerase (MBI Fermentas, Vilnius, Lithuania). The PCR conditions were as follows: an initial denaturation at 94°C for 5 min; followed by 35 cycles of 30 s at 94°C, 30 s at the locus-specific annealing temperature (Table 1), and 40 s at 72°C; and a final extension at 72°C for 5 min. The PCR products were separated using 6% denaturing polyacrylamide gels (Acr: Bis = 19:1) and visualized with silver staining. Due to the nonrecombining nature of the chloroplast genome, each pair of chloroplast microsatellite primers was considered as a "locus" at a cpSSR site. Length variants of chloroplast microsatellites at each cpSSR site were treated as alleles. Alleles detected from polymorphic primer pairs were used to generate a chloroplast haplotype of each individual; multilocus haplotypes were obtained by combining alleles from all polymorphic loci. Based on the polymorphic cpSSR markers, the fragment size amplified from each locus was scored by referring to a 20-bp DNA ladder (TaKaRa Biotechnology Co., Dalian, China). The number of alleles (A) and unbiased haploid diversity index (h) per polymorphic locus were calculated using the software GenAlEx version 6.41 (Peakall and Smouse, 2006). To estimate the informativeness of each SSR marker, the polymorphism information content (PIC) was calculated using the formula described by Botstein et al. (1980).

As shown in Table 2, the characteristics of the 12 polymorphic cpSSR loci are tested in 62 *V. unguiculata* samples. *A* ranged from two to four in *V. unguiculata* (average: 2.75), *h* ranged from 0.123 (VgcpSSR4) to 0.497 (VgcpSSR5) (average: 0.240), and PIC ranged from 0.114 (VgcpSSR4) to 0.369 (VgcpSSR5) (average: 0.211).

The transferability of the 12 V. unguiculata cpSSR markers was assessed in a related species, P. vulgaris; parameters of genetic variation were evaluated in

29 *P. vulgaris* individuals (the *P. vulgaris* group) (Table 2). All of the 12 cpSSR markers were successfully amplified in the *P. vulgaris* group, and nine showed polymorphisms, with the exception of VgcpSSR7, VgcpSSR9, and VgcpSSR13, which were monomorphic markers. Therefore, it indicated that 75% of these markers can amplify polymorphic bands. In *P. vulgaris*, *A* ranged from one to two, with an average value of 1.75. For each cpSSR locus, *h* was between 0.000 (VgcpSSR7, VgcpSSR14) (average: 0.312). The PIC value varied between 0.183 (VgSSR3) and 0.374 (VgcpSSR10, and VgcpSSR10, and VgcpSSR14) (average: 0.312).

CONCLUSIONS

Twelve polymorphic cpSSR markers were developed in *V. unguiculata* and showed high transferability in *P. vulgaris*. Further

TABLE 2. Characterization of the 12 cpSSR markers in *V. unguiculata* and their cross-species amplification in *P. vulgaris*.

	V. u	nguiculata g	group	P. vulgaris group		
Locus	Α	h	PIC	Α	h	PIC
VgcpSSR1	3	0.210	0.196	2	0.323	0.262
VgcpSSR2	3	0.362	0.303	2	0.516	0.374
VgcpSSR3	2	0.153	0.139	2	0.212	0.183
VgcpSSR4	2	0.123	0.114	2	0.380	0.298
VgcpSSR5	2	0.497	0.369	2	0.467	0.332
VgcpSSR7	2	0.125	0.116	1	0.000	
VgcpSSR9	2	0.151	0.138	1	0.000	
VgcpSSR10	4	0.256	0.237	2	0.529	0.374
VgcpSSR11	3	0.202	0.185	2	0.441	0.329
VgcpSSR12	4	0.270	0.255	2	0.349	0.280
VgcpSSR13	3	0.154	0.146	1	0.000	
VgcpSSR14	3	0.383	0.328	2	0.529	0.374
Average	2.75	0.240	0.211	1.75	0.312	0.312

Note: A = number of alleles for each locus; h = unbiased haploid diversity; PIC = polymorphism information content.

analyses indicated that the cpSSR markers of *V. unguiculata* could reveal a relatively high level of genetic diversity in both *V. unguiculata* and *P. vulgaris* germplasm. These markers can be used to investigate genetic diversity and evolution in *V. unguiculata* and *P. vulgaris*.

LITERATURE CITED

- ANGIOI, S. A., D. RAU, M. RODRIGUEZ, G. LOGOZZO, F. DESIDERIO, R. PAPA, AND G. ATTENE. 2009. Nuclear and chloroplast microsatellite diversity in *Phaseolus vulgaris* L. from Sardinia (Italy). *Molecular Breeding* 23: 413–429.
- BADIANE, F. A., B. S. GOWDA, N. CISSÉ, D. DIOUF, O. SADIO, AND M. P. TIMKO. 2012. Genetic relationship of cowpea (*Vigna unguiculata*) varieties from Senegal based on SSR markers. *Genetics and Molecular Research* 11: 292–304.
- BOTSTEIN, D., R. L. WHITE, M. SKOLNICK, AND R. W. DAVIS. 1980. Construction of a genetic linkage map in man using restriction fragment length polymorphism. *American Journal of Human Genetics* 32: 314–331.
- CITADIN, C. T., A. B. IBRAHIM, AND F. J. ARAGÃO. 2011. Genetic engineering in cowpea (*Vigna unguiculata*): History, status and prospects. *GM Crops* 2: 144–149.
- DESIDERIO, F., E. BITOCCHI, E. BELLUCCI, D. RAU, M. RODRIGUEZ, G. ATTENE, R. PAPA, AND L. NANNI. 2013. Chloroplast microsatellite diversity in *Phaseolus vulgaris. Frontiers in Plant Science* 3: 312.

- DOYLE, J. J., AND J. L. DOYLE. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. *Phytochemical Bulletin* 19: 11–15.
- LI, Q., AND J. M. WAN. 2005. SSRHunter: Development of a local searching software for SSR sites. *Hereditas* 27: 808–810 (in Chinese).
- MUCHERO, W., J. D. EHLERS, T. J. CLOSE, AND P. A. ROBERTS. 2009. Mapping QTL for drought stress-induced premature senescence and maturity in cowpea [Vigna unguiculata (L.) Walp.]. Theoretical and Applied Genetics 118: 849–863.
- PEAKALL, R., AND P. E. SMOUSE. 2006. GenAlEx 6: Genetic analysis in Excel. Population genetic software for teaching and research. *Molecular Ecology Resources* 6: 288–295.
- PROVAN, J., W. POWELL, AND P. M. HOLLINGSWORTH. 2001. Chloroplast microsatellites: New tools for studies in plant ecology and evolution. *Trends in Ecology & Evolution* 16: 142–147.
- ROZEN, S., AND H. SKALETSKY. 2000. Primer3 on the WWW for general users and for biologist programmers. *In* S. Misener and S. A. Krawetz [eds.], Methods in molecular biology, vol. 132: Bioinformatics methods and protocols, 365–386. Humana Press, Totowa, New Jersey, USA.
- XU, P., X. WU, B. WANG, Y. LIU, D. QIN, J. D. EHLERS, T. J. CLOSE, ET AL. 2010. Development and polymorphism of *Vigna unguiculata* ssp. *unguiculata* microsatellite markers used for phylogenetic analysis in asparagus bean (*Vigna unguiculata* ssp. *sesquipedialis* (L.) Verdc.). *Molecular Breeding* 25: 675–684.

APPENDIX 1. Voucher information for legume species used for the cpSSR polymorphism study. All vouchers are deposited at the Hubei Province Engineering Research Center of Legume Plants, Wuhan, China.

Species	Voucher accession no.	Country of origin/source	Species	Voucher accession no.	Country of origin/source
Phaseolus vulgaris	B48	China		B4	China
	C-1	China		В5	China
	C-2	China		B6	China
	C-3	China		B7	China
	C-4	China		B8	China
	C-6	China		B9	China
	C-7	China		B10	China
	C-8	China		B11	China
	C-11	China		B12	China
	C-12	China		B12	China
	(13*20)-2	China		B16	China
	(13*20)-2	China		B10 B17	China
	(13*20)-10	China		B17 B18	China
	(13*20)-7	China		B18 B20	China
	(13*20)-1	China		A80	China
	(13*20)-1 (13*20)-9	China		A80 A89	China
	(13*20)-9 (13*20)-4	China		A93	China
		China		A95 A96	China
	(1*7)-1				
	(1*7)-2	China		A98	China
	(1*7)-7	China		A104	China
	(1*7)-9	China		A105	China
	(1*7)-10	China		A115	China
	(1*7)-3	China		A125	China
	(3*10)-4	China		A136	China
	(3*10)-5	China		A143	China
	(3*10)-6	China		A1	China
	(3*10)-7	China		A8	China
	(3*10)-8	China		A27	China
	(3*10)-9	China		A33	China
Vigna unguiculata	B28	China		A58	China
	B30	China		A70	China
	B32	United States		A156	China
	B34	China		A162	China
	B35	China		A168	China
	B36	China		A171	China
	B37	China		A176	China
	B39	China		A181	China
	B42	China		A182	China
	J2	United States		A185	China
	J3	United States		A189	China
	J5	United States		A192	China
	J7	United States		A194	China
	J 9	Africa		A71	China
	J11	Mexico		A82	China
	J13	Germany		A155	China
	B3	Japan			