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Abstract
Aquaculture impacts on wild populations of fish have been con-

sidered principally due to farm escapes. The Bluefish Pomatomus
saltatrix, which exhibits two distinct genetic units in the
Mediterranean Sea, is a voracious predator and is attracted to aqua-
culture cages to prey on farmed fish, particularly Gilthead Seabream
Sparus aurata and European Sea Bass Dicentrarchus labrax. We
compared the genetic diversity of adult Bluefish caught inside one
aquaculture farm located in Spanish waters of the western
Mediterranean Sea with reference individuals of East and West
Mediterranean stocks from the open sea. Bluefish were genetically
assigned to their putative origin using seven microsatellite loci and
mitochondrial cytochrome oxidase subunit I as molecular markers.
As expected, most of the individuals caught from inside the fish farm
cageswere assigned to the local genetic population.However, between
7.14% and 11.9% of individuals were assigned to the distant and
different genetic unit inhabiting Turkish waters, the East
Mediterranean stock. The genetic membership of those individuals
revealed some degree of interbreeding between the East and West
Mediterranean Bluefish stocks. All results suggest that aquaculture

acts as an attractor for Bluefish and could affect genetic diversity as
well as phylogeography of this fish and maybe other similar species
that aggregate around marine fish farms.

The impacts of aquaculture on natural ecosystems are wide-
ranging, from esthetic aspects to undesirable effects on wild
surrounding populations (Black 2000; Fernandes et al. 2002;
Diana 2009). One of the most studied effects on wild fish
populations is the genetic interaction between farm escapees
and wild conspecifics (e.g., Hindar et al. 1991; Youngson et al.
2001; Read and Fernandes 2003; Naylor et al. 2005). Variants
from domestic fishes can be introduced into native genetic
pools thus reducing local adaptation, as reported for different
species (e.g., Youngson et al. 2001; Utter and Epifanio 2002).
Farm escapees and deliberate releases of hatchery stocks also
have the potential to alter population structuring and
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phylogeographic patterns of aquatic species. Examples are
abundant and include salmonids (e.g., Machordom et al.
2000; Bernatchez 2001; Naylor et al. 2005), flatfishes (e.g.,
Danancher and Garcia-Vazquez 2011), shellfish (e.g., Gaffney
2006), and algae (e.g., Voisin et al. 2005). Interspecific
impacts of aquaculture have also been reported. These include
the reduction of local native populations by competition with
exotic farmed species (Naylor et al. 2000; McGinnity et al.
2003), as well as increases in interspecific hybridization
(Verspoor 1988; Youngson et al. 1993), sometimes due to
alterations of behaviour in domestic variants (Hutchings and
Fraser 2009; Castillo et al. 2010). In general, the study of the
genetic impacts of aquaculture has focused on wild popula-
tions of the same species and/or closely related species that
can hybridize with escapees.

Nevertheless, there are other heterospecific impacts that
could also be derived from aquaculture. Hatcheries and aqua-
culture cages attract predators like bottlenose dolphins Tursiops
truncatus (Díaz-López et al. 2005; Díaz-López and Bernal-
Shirai 2007), cormorants (Díaz-López et al. 2008; Liordos
and Goutner 2008; Akyol and Ertosluk 2010), and many wild
fish species (Dempster et al. 2002; Valle et al. 2007). However,
one aspect that has rarely been considered is how the attraction
an aquaculture facility can potentially change the genetic pat-
tern of an attracted species. If fish farms are a magnet for
predators that repeatedly change their migratory routes, we
might expect that the population structure and, on a longer
term, the phylogeographic pattern of the attracted species can
change. Those changes can alter the ecosystem equilibrium and
may potentially result in its collapse (e.g., McCann 2007; Baum
and Worm 2009), but the consequences of a phylogeographic
change of predator species have not been explored yet.

We used Bluefish Pomatomus saltatrix as a case study to
investigate the effects of aquaculture farms on attracted pre-
dators. Bluefish is a fast-growing piscivorous predator (e.g.,
Juanes and Conover 1994) that has been reported to stay
around fish farms, break into sea cages, and feed on farmed
fish (e.g., Gilthead Seabream Sparus aurata) in the western
Mediterranean Sea near Alicante, Spain (Sanchez-Jerez et al.
2008; Arechavala-Lopez et al. 2015). Bluefish exhibit spatial
population differentiation across the Mediterranean Sea
(Pardiñas et al. 2010; Miralles et al. 2014b) and are good
candidates for testing the effects of attraction at long-distance
scales since individuals from different areas can be identified
by their genetic pattern. Our hypothesis was that Bluefish from
inside the farm are a mixture of genetic lineages coming from
different geographical areas, and as a consequence, this might
alter the phylogeographic pattern of the species.

METHODS
Study site and sampling.—A total of 159 Bluefish were

collected during 2004 and 2005 along the coast of the
Mediterranean Basin. Bluefish is a highly migratory species
composed of different stocks and populations along its
cosmopolitan distribution. In the study site, two distinct
genetic units called East and West Mediterranean were
previously described (Pardiñas et al. 2010; Miralles et al.
2014b), and there is an indication of some connectivity
between them (Miralles et al. 2014a).

Spearfishing was used to collect 42 Bluefish inside the
Gilthead Seabream and European Sea BassDicentrarchus labrax
marine farm cages located 3.7 km from shore in Guardamar
(Alicante, Spanish Mediterranean coast; Figure 1). Created in

FIGURE 1. Bluefish sampling locations in the western and eastern Mediterranean Sea.
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2001, this fish farm is one of the largest aquaculture farms in
Spain and produces more than 3,500 metric tons of Gilthead
Seabream and European Sea Bass per year. Moreover, in the
Mediterranean Sea this farm is the one most affected by repeated
and frequently reported intrusions of Bluefish inside the facilities
(Sanchez-Jerez et al. 2008; Arechavala-Lopez et al. 2011, 2015).
Samples of adult and mature Bluefish that had broken the netting
andwere inside sea cages of this westernMediterranean fish farm
were fished on several randomly selected days throughout the
sampling period.

Reference wild populations of Bluefish from the open sea
were defined according to the two distinct genetic units
described in the Mediterranean Basin (Pardiñas et al. 2010;
Miralles et al. 2014a, 2014b). For the East Mediterranean
genetic unit, the reference samples (n = 44) came from two
sites: Istanbul in the Sea of Marmara (n = 24) and Canakkale in
the Aegean Sea (n = 20), both within Turkey and located at
approximately 2,900 and 2,700 km, respectively, from the
Guardamar aquaculture facilities. For the West Mediterranean
Bluefish genetic unit, the samples (n = 72) were collected near
Barcelona in the western Mediterranean Sea (n = 7) and in the
Gulf of Cadiz in the Atlantic Ocean (n = 65), both within Spain
and at 500 and 900 km, respectively, from Guardamar.

DNA extraction, amplification and sequencing.—Small
pieces of Bluefish muscle were dissected and preserved
in absolute ethanol prior to laboratory analyses. The
DNA was extracted following a Chelex-based protocol
(Estoup et al. 1996). Seven hypervariable microsatellite
loci were PCR-amplified following the conditions
described by Dos Santos et al. (2008). Allele sizes were
determined from PCR products using an ABI PRISM 3100
Genetic Analyzer (Applied Biosystems) in the Unit of
Genetic Analysis at the University of Oviedo, Spain.
Microsatellite alleles were scored with the program
GeneMapper version 4.0 (Applied Biosystems).

The mitochondrial cytochrome oxidase subunit I (COI) gene
was amplified with the primers, conditions, and protocol described
inMiralles et al. (2014a, 2014b). Sequencing was performed using
the genetic analyzer at the University of Oviedo with a BigDye 3.1
Terminator system.

Population genetic diversity and differentiation estimates.—
The program MICROCHECKER 2.2.3 (Van Oosterhout et al.
2004) was used to check for null alleles, scoring errors, and allele
drop-out. Microsatellite variation (number of alleles per locus,
allelic richness, and observed and expected heterozygosities) was
calculated with the programs GENETIX version 4.03 (Belkhir
et al. 2001) and FSTAT version 2.9.3.2 (Goudet 2001). Exact
tests for the departure from Hardy–Weinberg equilibrium were
performed with GENEPOP version 1.2 (Raymond and Rousset
1995) using Bonferroni corrections.

Sequences of COI were edited with BioEdit Sequence
Alignment Editor (Hall 1999) and aligned with ClustalW
(Thompson et al. 1994). The program DNAsp version 5
(Librado and Rozas 2009) was employed to calculate the

number of haplotypes (Nh), haplotype diversity (Hd), and
nucleotide diversity (π). Pairwise FST values, indicators of
genetic distance between populations, were calculated with
Arlequin version 3.0 (Excoffier et al. 2005) (10,000 per-
mutations, 100,000 steps in Markov chain).

Population assignment based on genotypes.—To examine
assignment accuracy a pretest based on leave-one-out
individual assignments was performed using the software
ONCOR (Kalinowski et al. 2007), taking into account that
90% correct assignment is the threshold often used as an
indication that the baseline stocks have been adequately
delineated for assigning individuals from mixed fisheries.
Furthermore, Bluefish assignation to a population of origin
was carried out employing three different methodologies to
get more robust conclusions based on consistent results.
We used GeneClass2 (Piry et al. 2004) for Bayesian
assignment with a 0.05 score threshold, and two methods
were assayed: Rannala and Mountain (1997) and Baudouin
and Lebrun (2001). Assignation results were checked by
Monte Carlo resampling through the simulation algorithm
of Paetkau et al. (2004) with 10,000 individual simulations
and a type I error of 0.01. We used ONCOR (Kalinowski
et al. 2007) for maximum-likelihood assignment tests.
Individuals were assigned to a population based on the
probability of that population containing the individual’s
genotype. Also, a classical mixed stock analysis (MSA)
was conducted using the Statistical Program for Analyzing
Mixtures (SPAM) version 3.7 (Alaska Department of Fish
and Game 2003) with 10,000 iterations and 1,000
bootstraps.

To check the possibility of mixed ancestry of indivi-
duals from inside the farm or possible interbreeding
between East and West Mediterranean Bluefish stocks we
employed STRUCTURE 2.3.1 (Pritchard et al. 2000). Data
sets were analyzed under the “Admixture model,” which
assumes that individuals may have mixed ancestry. The
parameter set consisted of a burn-in period of 100,000
steps followed by 1,000,000 Markov chain Monte Carlo
(MCMC) iterations and five runs for K = 2 (number of
genetic units).

RESULTS

Population Genetic Diversity and Differentiation
Bluefish collected inside the Guardamar fish farm

exhibited very high genetic diversity at both microsatellite
and mitochondrial DNA, even higher than those from all
the other sampling locations clustered together (Figure 2A)
and significant in a Wilcoxon signed-rank test (W-value =
0, P ≤ 0.05). We found a total of 12 COI sequence
haplotypes (accession numbers: JQ039400–JQ039406,
JQ039425–JQ039429 in GenBank; www.ncbi.nlm.nih.gov/
genbank/); half of these haplotypes were found only in
specimens caught inside the farm. Bluefish inside the
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farm had higher COI diversity (Figure 2A, left panel) than
all the other Bluefish samples analyzed in this study
(obtained from four distant locations). Bluefish inside the
farm were also more diverse at microsatellite loci than all
samples from outside the farm (Figure 2A, right panel),
exhibiting higher allelic richness, more loci with possible
Wahlund effects (excess of homozygotes, but not signifi-
cant deviations from Hardy–Weinberg equilibrium after
Bonferroni corrections except for one locus in one loca-
tion), and fewer private alleles. A similar pattern was also
visible when samples from the two reference genetic units
were compared: East and West Mediterranean
(Figure 2B.). All of these results suggest that the high
diversity of Bluefish caught inside the farm was due to
population mixture.

Putative Population Assignment Based on Genotypes
Based on leave-one-out analyses, incorrect assignments

were lower than 6%; thus, the reported Bluefish population
assignments can be considered robust. The three population
assignment methods showed that the majority of Bluefish
caught inside the farm belonged to the local reference popu-
lation, the West Mediterranean genetic unit (Figure 3).
Surprisingly, a high percentage of individuals was assigned
to Turkish populations (Figure 3; Table 1), varying from
7.14% to 11.9% depending on the methodology used. The
three methods used in this study assigned the same three
individuals (labeled A09, A21, and A35) to the Turkish
population (Figure 3). Two more individuals were identified
by at least one Bayesian method: individual A36 with the
Rannala and Mountain (1997) method and individual A42
with the Baudouin and Lebrun (2001) method. Furthermore,
employing a classic MSA approach, 10.8% of Bluefish
caught inside the farm belonged to the East Mediterranean
stock (95% CI, 0.0–26.6%).

Mixed ancestry was detected in the individuals of non-
local origin that were caught inside the farm (Table 2).
Proportions of East Mediterranean stock membership var-
ied from 24.6% to 92.8% inside the farm suggesting inter-
breeding between the two lineages, while in the reference
populations only 11.08% of mixed membership in Turkish
and 14.05% in Spanish stocks were found.

DISCUSSION
Because there is a continuous global increase in marine

aquaculture the effects this may have on a wider ecosys-
tem scale should be of concern. In this study, we examined
the possible evolutionary changes that may occur in the
surrounding accompanying species due to aquaculture,
using a predator fish species, the Bluefish, as a case
study. Using different assignation methodologies with dif-
ferent approaches and a mixed stock analysis, we obtained
similar results: Bluefish caught inside the aquaculture farm
belonged to different genetic units from the two subbasins
of the Mediterranean Sea. They likely came from different
regions of the Mediterranean Sea, including distant
Turkish localities, and also the closer north-eastern
Atlantic Ocean in Spain, thus making up a mixture of
immigrants of different genetic stocks. Accordingly, our
results showed that the Bluefish found inside the farm
had higher genetic diversity than all the reference samples
clustered together and formed a mixed population contain-
ing lineages from different genetic units previously
described in the Mediterranean Basin (Pardiñas et al.
2010; Miralles et al. 2014b).

In a comparison of the three different methodologies
(ML, Bayesian, and MSA), ONCOR assignations were
stricter than the two GeneClass methods. The Rannala
and Mountain (1997) method, frequently employed to

FIGURE 2. Genetic diversity parameters for Bluefish from inside the Spanish
aquaculture farm compared (A) with all reference populations together and
(B) with West and East Mediterranean reference populations separately:
variation at mitochondrial DNA (left graphs) and microsatellite loci (right
graphs). Nh: number of haplotypes; n: number of individuals; Hd: haplotype
diversity; π: nucleotide diversity; AR: allelic richness; Wahlund: loci with
significant Wahlund effect (excess of homozygotes, an indicator of population
mixture). Values were transformed mathematically for easier visualization and
comparison in the graph as: Nh/n (×2); π (×300); AR and private alleles (÷20);
Wahlund (×10).
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assign fish to farms by other investigators (Glover et al.
2008, 2009), yielded the highest assignment values to
Turkish populations (Table 1; Figure 3A). The Baudouin
and Lebrun (2001) method was intermediate. Finally, the
MSA method did not identify the individuals but provided
a CI for the results. Therefore we recommend combining
all the methodologies for the best resolution and robust
analysis. From this perspective, a minimum of 7% and a

maximum of 12% of farm-collected Bluefish individuals
would be immigrants. Results also suggest that the
observed differentiation of Bluefish between the western
and eastern subbasins of the Mediterranean Sea (Pardiñas
et al. 2010; Miralles et al. 2014b) are in a regressive
process if the immigrants stay in the farms and reproduce,
and then the two genetic units fuse together. This process
has already been detected since those immigrants had

FIGURE 3. Assignment scores and membership estimations of Bluefish from inside the aquaculture farm. Each bar represents one individual fish from A1 to
A42 belonging to the farm. Assignation to the local population (West Mediterranean) is in gray and assignation to Turkish population (East Mediterranean) is in
black. (A) Rannala and Mountain (1997) method; (B) Baudouin and Lebrun (2001) method; (C) ONCOR (Kalinowski et al. 2007) method; (D) STRUCTURE
software (Pritchard et al. 2000).
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mixed ancestry. In other words, the two stocks seem to
interbreed. The effects of this evolutionary process may
depend on several factors such as the history and size of
the populations as well as the time scale (Hauser and
Carvalho 2008). However, the estimate of 7–12% immi-
grants inside the farm should be interpreted with caution
given that the leave-one-out analysis showed a misassign-
ment rate of almost 6% in the known-origin reference
samples. Also, that unsampled Bluefish source populations
might exist and only one aquaculture farm was studied
should be taking into account.

This study provides a new perspective on aquaculture
effects on the surrounding ecosystem. Aquaculture facil-
ities might have an impact on the phylogeography of wild
predators such as Bluefish that are not farmed but are
attracted to fish farms. In conclusion, based on genetic
assignments of Bluefish caught inside a Spanish Gilthead
Seabream farm, we revealed that there is a mixture of East
and West Mediterranean lineages inside the farm located in
Guardamar in the western Mediterranean Sea. We suggest
that marine farms modify the genetic variation of accom-
panying species at different levels, from local population
diversity to phylogeographic scale, especially when

prolonged attraction occurs from a long distance, as it
seems to happen in the Mediterranean Sea.
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