Amplified Fragment Length Polymorphism Mapping of Quantitative Trait Loci for Economically Important Traits in the Silkworm, Bombyx mori

Authors: Mirhoseini, Seyed Z, Rabiei, Babak, Potki, Payam, and Dalirsefat, Seyed B

Source: Journal of Insect Science, 10(153): 1-21

Published By: Entomological Society of America

URL: https://doi.org/10.1673/031.010.14113

The BioOne Digital Library (<u>https://bioone.org/</u>) provides worldwide distribution for more than 580 journals and eBooks from BioOne's community of over 150 nonprofit societies, research institutions, and university Downloaded From: https://siging.bioone.org/journals/Journal-of-insect-Science.or 25 Mar 2025 Terms of Discharge Sciencies, The BioOne Digital Library encompasses

Amplified fragment length polymorphism mapping of quantitative trait loci for economically important traits in the silkworm, *Bombyx mori*

Seyed Z Mirhoseini^{1a}, Babak Rabiei^{2b}, Payam Potki^{3c}, and Seyed B Dalirsefat^{4d*}

¹Department of Animal Science, Faculty of Agricultural Sciences, University of Guilan, PO Box 41635-1314, Rasht, Guilan, Iran

²Department of Agronomy & Plant Breeding, Faculty of Agricultural Sciences, University of Guilan, PO Box 41635-1314, Rasht, Guilan, Iran

³Department of Genomics, Agricultural Biotechnology Research Institute of Iran (Rasht), PO Box 41635-4115, Rasht, Guilan, Iran

⁴Department of Sericulture, Faculty of Agricultural Sciences, University of Guilan, PO Box 41635-1314, Rasht, Guilan, Iran

Abstract

Cocoon related characteristics are economically important traits in the silkworm, *Bombyx mori* L. (Lepidoptera: Bombycidae). In this study a genetic linkage map was developed that identified QTL controlling the cocoon weight, cocoon shell weight, and cocoon shell percentage using 161 amplified fragment length polymorphism (AFLP) markers. Twenty *Pstl/TaqI* primer combinations were employed to genotype 78 F_2 progenies derived from a cross between P107 Japanese inbred line and Khorasan Lemon Iranian native strain. Among polymorphic markers, 159 AFLP markers were assigned to 24 linkage groups at the LOD threshold of 2.5 that varied in length from 4 to 299 cM. The total length of the linkage map was 2747 cM, giving an average marker resolution of 19.31 cM. A total of 21 AFLP markers were identified that were distributed over the ten linkage groups linked to the three studied traits using the composite interval mapping method. The explained variation rate by QTL controlling cocoon weight, cocoon shell weight, and cocoon shell percentage ranged from 0.02% to 64.85%, 0.2% to 49.11%, and 0.04% to 84.20%, respectively. These QTL controlled by different actions as well as under dominance, additive, partial dominance, and over dominance.

Keywords: AFLP markers, cocoon traits, QTL mapping

Abbreviations: ABRII, Agricultural Biotechnology Research Institute of Iran; AFLP, Amplified Fragment Length Polymorphism; AREO, Agricultural Research and Education Organization; BC, Backcross; CIM, Composite Interval Mapping; CM, centimorgans; ESTs, Expressed Sequence Tags; IM, Interval Mapping; ISRC, Iran Silkworm Research Center; LG, Linkage Group; LOD, Logarithm of Odds; LRT, Likelihood Ratio Test; NPV, Nuclear Polyhedrosis Virus; PCR, Polymerase Chain Reaction; QTL, Quantitative Trait Loci; RAPD, Random Amplified Polymorphic DNA; RFLP, Restriction Fragment Length Polymorphism; SADF, Selective Amplification of DNA Fragments; SNP, Single Nucleotide Polymorphism

Correspondence: a mirhosin@guilan.ac.ir, b rabiei@guilan.ac.ir, c payam_572003@abrii.ac.ir,

^{d*} bendalir@guilan.ac.ir, *Corresponding author

Associate Editor: Craig Coates was editor of this paper.

Received: 7 April 2009, Accepted: 2 May 2010

Copyright : This is an open access paper. We use the Creative Commons Attribution 3.0 license that permits unrestricted use, provided that the paper is properly attributed. **ISSN:** 1536-2442 | Vol. 10, Number 153

Cite this paper as:

Mirhoseini SZ, Rabiei B, Potki P, Dalirsefat SB. 2010. Amplified fragment length polymorphism mapping of quantitative trait loci for economically important traits in the silkworm, *Bombyx mori. Journal of Insect Science* 10:153 available online: insectscience.org/10.153

Introduction

The silkworm, Bombyx mori L. (Lepidoptera: Bombycidae), domesticated for silk production for about 5000 years, is an agriculturally important insect and comprises a large number of geographical races and inbred lines that show substantial variation in qualitative their and quantitative traits (Mirhoseini al. 2007). et With the establishment of stable transformation (Yamao et al. 1999; Tamura et al. 2000), B. mori has shown the potential to produce pharmaceutically important proteins in high yield (Tomita et al. 2003), opening up new applications for sericulture in medical, agricultural, and industrial fields (Yamamoto et al. 2006). Currently, it is the major economic resource for nearly 30 million families in countries such as China, India, Vietnam, and Thailand (Miao et al. 2005). In order to make sericulture economically viable, genes affecting growth rate, yield, fiber quality, and virus resistance can be tagged with molecular markers for rapid construction of genetically improved strains. Taking the exclusive investigational advantages of this organism into account, as well as its economic importance, an International Consortium on Lepidopteran Genomics was formed a few years ago to support international cooperation to sequence the genome of B. mori and to initiate comparative genomics of other economically important Lepidoptera (Nagaraju and Goldsmith 2002).

Most traits in nature and of importance to agriculture are quantitatively inherited and therefore are difficult to study due to the complex nature of their inheritance. However, recent advances of genomic technologies have led to revolutionary means for unraveling the secrets of genetic variation in quantitative traits. Genomic technologies allow the molecular characterization of polymorphic markers throughout the entire genome that are then used to identify and map the genes or quantitative trait loci (QTL) underlying a quantitative trait based on linkage analysis (Wu et al. 2007).

A complete linkage map is necessary to efficiently carry out molecular-based analyses such as molecular marker-assisted selection, quantitative trait loci (QTL) mapping of agronomically important traits, prediction of heterosis, and comprehensive investigations of genomic evolution between lineages (Tan et al. 2001). Presently, genome studies in B. mori have generated genetic linkage maps based on morphological markers (Doira et al. 1992) and molecular markers including RFLP (Goldsmith 1991; Shi et al. 1995; Nguu et al. 2005), RAPD (Promboon et al. 1995; Yasukochi 1998; Li et al. 2000), SADF and RAPD (He et al. 2001), AFLP (Tan et al. 2001; Lu et al. 2004; Sima et al. 2006), microsatellites (Miao et al. 2005), and SNP (Yamamoto et al. 2006).

Projects have been initiated to find molecular markers that are tightly linked to traits relevant for sericulture, with the related goals of developing tools for marker assisted selection and positional cloning. RAPD or cDNA markers have been associated with the known four densonucleovirus nonsusceptibility loci, nsd-1 (Abe et al. 1998), nsd-2 (Abe et al. 2000), Nid-1 (Kadono-Okuda et al. 2003), and *nsd-Z* (Li et al. 2001). Two large contigs on chromosome 17 that encompass cDNAs closely linked to Nid-1 and nsd-2 have been isolated and sequenced (Kadono-Okuda et al. 2003) and are being examined for candidate genes in susceptible and nonsusceptible strains (Goldsmith et al.

2005). A similar strategy was used to screen for RAPD markers linked to resistance to NPV, a potentially devastating pathogen (Yao et al. 2003), and fluoride resistance (Chen et al. 2003). Progress has also been made in assigning RAPDs (Chatterjee and Pradeep 2003), inter-simple sequence repeat markers (Chatteriee and Mohandas 2003), and AFLP (Lu et al. 2004; Li et al. 2006; Sima et al. 2006) to QTL for characters such as larval growth rate and pupal and cocoon weight. A suite of additional fingerprinting tools has for these applications been developed (Nagaraju and Goldsmith 2002). In addition, a collection of about 8500 expressed sequence tags (ESTs) is now available in GenBank and provides an additional source of important anchors in the ongoing *Bombyx* genome study (Nguu et al. 2005).

Although for genome mapping, the ideal genetic marker is codominant, multiallelic, and hypervariable (i.e., segregates in almost every family), some dominant markers are also very useful and powerful in particular situations (Wu et al. 2007). The amplified fragment length polymerphism (AFLP) technique (Zabeau and Vos 1992; Vos et al. 1995) has demonstrated to be a convenient and reliable tool to generate highly polymorphic molecular markers that greatly facilitate building linkage maps (Qi et al. 1997; Waugh et al. 1997). AFLP markers do allow one to construct linkage maps with wide genome coverage without engaging in extensive sequencing or marker development programs. AFLP markers are also faster than individual codominant marker types because a single polymerase chain reaction (PCR) can derive multiple loci simultaneously (Erickson et al. 2004). Because of these features, AFLP has been widely employed for genetic mapping in various organisms.

In this study, significant molecular markers and a large segregating population size were employed to detect QTL linked to economically important traits relevant to the B. mori cocoon and to better identify the genome regions of these QTL. Since highresolution QTL mapping is critical for positional cloning and gene isolation (Zhong et al. 2006), a high resolution AFLP-based genetic linkage map and the results of QTL mapping for economically important cocoon traits are reported.

Materials and Methods

Insect materials and crosses

One F₂ segregating family from mating between a Japanese inbred line (P107) as female parent and an Iranian native strain (Khorasan Lemon) as male parent were used in the study. These inbred line and strain exhibit high phenotype diversity for economically important characters such as whole cocoon weight, cocoon shell weight, and cocoon shell percentage, suggesting that considerable polymorphism exists at the DNA level (Dalirsefat and Mirhoseini, 2007). Indeed, the highest and the least quantities of these traits corresponded to P107 and Khorasan Lemon, respectively. These inbred line and strain have undergone a high degree of inbreeding and are relatively homozygous. A total number of 78 progenies, including 39 males and 39 females from F₂ population, were used to construct the genetic linkage map and QTL detection. The parents and F₁ progenies were used to establish the segregation pattern of the molecular markers. The crossing experiments were done in the Iran Silkworm Research Center (ISRC) located in Rasht, Iran.

AFLP analysis

Genomic DNAs were isolated individually from all the parents, F_1 , and F_2 populations, in the moth stage following the phenol/chloroform method (Suzuki et al. 1972) and as modified by Nagaraja and Nagaraju (1995). DNAs were quantified using a known standard (DNA lambda, Roche, www.roche.com) on agarose gels.

All individuals were subjected to genotyping with AFLP markers according to Vos et al. (1995) with some modifications. Briefly, genomic DNA was double digested with PstI and TaqI restriction enzymes, which produce polymorphic DNA fragments in B. mori (Tan et al. 2001; Mirhoseini et al. 2007). The DNA fragments were ligated with PstI and TaqI adaptors, generating template DNA for PCR amplification. Two primers were designed on the basis of adaptor sequences and restriction site sequences to use in PCR amplification. Selective nucleotide sequences were added to the 3' end of each primer. PCR amplification was conducted in two steps: a preamplification and a selective amplification. For the selective amplification, a total of 81 primer combinations obtained from two sets of *PstI* and *TaqI* selective primers (Table 1) were screened. Among them, 20 primer pairs that produced fragments with clear dominance inheritance patterns and reproducibility were used for the linkage analysis. Polymorphism screening of AFLP products was conducted on a 6% polyacrylamide gel using SequiGen 38×30 cm gel apparatus (BioRad Laboratories Inc., www.bio-rad.com). Bands were detected by the silver staining procedure (Promega, www.promega.com, Technical manual No.023), and gel images were scanned and saved as jpeg files for scoring and further analysis.

Linkage analysis and map construction

Using genotype information of 81 AFLP primer combinations, 20 primer combinations produced clearly readable that and polymorphic fragments among parents were employed to analyze linkage mapping. Twenty polymorphic primer combinations generating 161 polymorphic AFLP fragments with a clear dominance inheritance pattern were employed to construct the linkage map and detect QTL; that is, the suitable fragments must show complete dominance expression in one parent and complete recessive expression in the other, and all F1 individuals must be heterozygous. The AFLP fragments were scored based on 0 and 1 and then converted to A, B, C, and D letters according to the Map manager QTX (Manly et al. 2001) instruction manual. The data were analyzed using the Kosambi map function (Kosambi 1944) of Map manager QTX (Manly et al. 2001) to develop a linkage map for the population. By genotyping 78 progenies from the F2 population using 161 polymorphic bands, a genotypic data matrix in a dimension of 78 × 161 was constructed and used for linkage mapping. First recombination rates among markers were evaluated, then and recombination rates converted to the map distance based on centiMorgan using the Kosambi map function (Kosambi 1944). Computer software QTL cartographer version 2.5 (Wang et al. 2007) was used to determine the QTL positions, the expected additive and dominance effects, and the phenotypic variance explained by individual QTL. The LOD threshold value for declaring the presence of a QTL was determined by a permutation test (n = 1000) (Churchill and Doerge 1994). Genome-wide threshold levels were used to declare significant QTL based at the 5% significance level. Average levels of dominance (h) were estimated using the ratio dominance/additive effects (Stuber et al. 1987).

All molecular experiments were established in the genomics laboratory of the Agricultural Biotechnology Research Institute of North Region (Rasht) under the supervision of the Agricultural Biotechnology Research Institute of Iran (ABRII).

Results

Linkage map construction

Among the 81 AFLP primer combinations screened, approximately one-third of the primer combinations (n = 28) produced polymorphic fragments between the P107 inbred line and the Khorasan Lemon native Twenty pairs of AFLP primer strain. combinations were selected for segregation analysis on the F2 population based on reproducibility and the degree of polymorphism. polymorphic Only the fragments that segregated in a dominant

manner and could be scored unambiguously were used for linkage map construction. An example of AFLP gel electrophoresis and polymorphism screening related to the Ptat-Ttac primer combination is shown in Figure 1.

primer Twenty PstI/TaqI combinations produced 845 clearly detected bands, of which 161 qualified polymorphic fragments showing good agreement of 3:1 segregation (for a dominant marker, the segregation ratio is 3:1 in the F2 population) were analyzed for frequency linkage mapping. The of polymorphic AFLP markers derived from the clearly detected bands in the P107 × Khorasan Lemon cross in the silkworm was 19.35%. This frequency was close to that obtained in the Dazao \times C₁₀₀ cross of the silkworm (25.7%) (Lu et al. 2004) but it was dramatically lower than in the no. 782 × od100 cross (60.7%) of the silkworm (Tan et al. 2001).

	Name	Sequence
Adapters Pstl	Pst top strand	5'-GACGTGACGGCCGTCATGCA
	Pst bottom strand	5'-TGACGGCCGTCACG
Adapters <i>Taq</i> l	Taq top strand	5'-GACGATGAGTCCTGAG
	Taq bottom strand	5'-CGCTCAGGACTCAT
Primers Pstl	POI	5'-GACGGCCGTCATGCAG
	P21	5'-GACGGCCGTCATGCAG TA
	P22	5'-GACGGCCGTCATGCAG AT
	P23	5'-GACGGCCGTCATGCAG TC
	P24	5'-GACGGCCGTCATGCAG AC
	P31	5'-GACGGCCGTCATGCAG AAC
	P32	5'-GACGGCCGTCATGCAG AGA
	P33	5'-GACGGCCGTCATGCAG ATG
	P34	5'-GACGGCCGTCATGCAG AAG
	P35	5'-GACGGCCGTCATGCAG TAT
Primers Taql	T01	5'-GATGAGTCCTGAGCGA
	T21	5'-GATGAGTCCTGAGCGA TA
	T22	5'-GATGAGTCCTGAGCGA AT
	T23	5'-GATGAGTCCTGAGCGA TC
	T24	5'-GATGAGTCCTGAGCGA TG
	T31	5'-GATGAGTCCTGAGCGA AAT
	Т32	5'-GATGAGTCCTGAGCGA ACA
	Т33	5'-GATGAGTCCTGAGCGA AAG
	Т34	5'-GATGAGTCCTGAGCGA AGC
	T35	5'-GATGAGTCCTGAGCGA TAC

^a Selective nucleotides shown as bold letters

(Table 2).

91 fragments of 161 polymorphic fragments (56.52%) were detected in the male parent (Khorasan Lemon strain), and 70 fragments (43.48%) were observed in the female parent (P107 inbred line). On average, each primer combination generated 8.05 polymorphic fragments that could be used for linkage mapping. The number of polymorphic bands produced using the 20 primer combinations ranged from 3 bands (7.32%) corresponding

The linkage map generated from the P107 \times Khorasan Lemon cross contained 159 AFLP markers (two markers were unlinked) that were assigned to 24 linkage groups at the

to P33-T32 to 14 bands (23.33%) for P22-T31

LOD threshold of 2.5 (Figure 2). Average distance between markers was 19.31 cM. The total recombination distance over 24 linkage groups was 2747 cM, which was longer than previous estimates in B. mori, i.e. 1800 cM for the dense RAPD map (Yasukochi 1998), 1868.10 cM and 2677.50 cM for the AFLP maps in two F₂ subgroups (Sima et al. 2006), and 1305 cM for SNPs based linkage map (Yamamoto et al. 2006). However, it was shorter than 6512 cM (Tan et al. 2001) and 3676.7 cM (Li et al. 2006) for the AFLP maps and 3431.9 cM (Miao et al. 2005) for the SSR markers reported in backcrossed populations of B. mori. Miao et al. (2005) suggested that although many conditions influence map length, including differences in mating

Journal of Insect Science | www.insectscience.org

strategy and strains used, the distribution of markers is a possible causative aspect, and increased marker density should converge on a more realistic map length value. As Tan and Ma (1998) demonstrated theoretically, with additional markers typed, the map length may increase when marker density is not saturated or may decrease when marker density is in a saturation state (Tan et al. 2001). For example, Causse et al. (1994) constructed a rice map with 762 markers covering 4026.3 cM, whereas Harushima et al. (1998) obtained a 2275-marker genetic map of rice covering 1521.6 cM. This may explain why the length of our AFLP map is more than that of the B. mori linkage map studies mentioned above except for the maps of Tan et al. (2001), Miao et al. 2005, and Li et al. (2006).

Considering that the estimated genome size of *B. mori* is 530 Mbp (Gage 1974), the average physical distance per recombination distance

is about 193 kb/cM. It seems that the AFLP markers did not exhibit significant clustering near centromeres or the distal region of chromosomes, suggesting that they provide good coverage of the genome (!"#\$% et al. 2006, Figure 2).

Phenotypic values

The average phenotypic values of cocoon weight, cocoon shell weight, and cocoon shell percentage traits corresponding to each parent and F₂ offspring are shown in Table 3. An extremely high significant difference (p < 0.01) for these traits was revealed as a result of comparing the mean phenotypic values between parents using the *t*-test. The mean cocoon weight in line P107 as female parent and Khorasan Lemon as male parent was 1.479 and 1.404 g, respectively. The mean cocoon shell weight in line P107 was 0.324 g, approximately 0.113 g more than that in Khorasan Lemon (0.211 g). In addition, the

ble 2. The	e observed polym	orphisms of twenty Taql and Pst	l primer combina	tions used in the p	arents and F2 populat
Primer	Total number of	Number of polymorphic bands in	Number of bands in e	polymorphic ach parents	Observed polymorphism
manne	bands	parents	P107	Khorasan Lemon	rate
P31-T34	43.00	11.00	5.00	6.00	25.58
P31-T24	44.00	5.00	0.00	5.00	11.36
P22-T31	60.00	14.00	4.00	10.00	23.33
P33-T32	41.00	3.00	2.00	1.00	7.32
P35-T24	38.00	5.00	3.00	2.00	13.16
P32-T33	46.00	7.00	2.00	5.00	15.22
P21-T32	42.00	10.00	6.00	4.00	23.81
P31-T23	50.00	6.00	3.00	3.00	12.00
P24-T33	40.00	8.00	5.00	3.00	20.00
P23-T32	50.00	8.00	5.00	3.00	16.00
P35-T21	45.00	10.00	4.00	6.00	22.22
P35-T35	45.00	7.00	5.00	2.00	15.56
P35-T34	53.00	11.00	7.00	4.00	20.75
P33-T34	45.00	4.00	0.00	4.00	8.89
P31-T22	32.00	11.00	4.00	7.00	34.38
P34-T32	42.00	13.00	4.00	9.00	30.95
P22-T32	35.00	8.00	2.00	6.00	22.86
P22-T34	33.00	8.00	3.00	5.00	24.24
P35-T33	32.00	6.00	2.00	4.00	18.75
P21-T33	29.00	6.00	4.00	2.00	20.69
Total	845.00	161.00	70.00	91.00	387.07
Average	42.25	8.05	3.50	4.55	19.35

^a Primer combinations and sequences shown in Table 1.

cocoon shell percentage in the line P107 was estimated to be 22.23%, which was seven percent more than that in Khorasan Lemon (15.23%) as the male parent. Except for cocoon weight value in the F_2 population, which was higher than both parent values, both the mean cocoon shell weight and cocoon shell percentage traits in the F_2 generation were closely equal to the mean parent values (Table 3).

The frequency distribution of phenotypic values related to each trait studied in the F_2 offspring is illustrated in Figure 3. As it is shown, a number of F_2 offspring demonstrated out of range parent values, especially in the

line P107 for the three studied traits. The least and the highest phenotypic values of cocoon weight in the F_2 population were 1.13 g and 1.83 g, respectively, and the highest value was about 0.35 g more than that in the line P107 (1.479 g). The least and the highest phenotypic values of cocoon shell weight in the F_2 population were 0.22 g and 0.37 g, respectively; consequently, a number of the F_2 offspring had almost 0.046 g more than that in the line P107 phenotypic value (0.324 g). In addition, the least and the highest phenotypic values of cocoon shell percentage in the F_2 22.6%. progenies were 15.72% and respectively; the highest value was nearly 0.4% higher than that in the line P107 (22.2%) (Figure 3).

QTL analysis

A total of 21 different loci, including QTL, controlling cocoon weight, cocoon shell weight, and cocoon shell percentage traits were detected in the linkage map using a composite interval mapping method at the LOD threshold of 2.5 (Table 4). The selected LOD score plots at the threshold of 3 for linkage groups with the identified QTL provided a basis for identifying the molecular markers most closely linked to the QTL (Figure 4).

In particular, 12 QTL controlling cocoon weight were identified on the LG1, LG5, LG6, LG8, LG16, LG17, and LG19. The additive effects of these QTL ranged from - 0.1581 (*cw8*) to +0.0887 (*cw19b*), and their dominance effects ranged from -0.3852 (*cw19a*) to +0.3881 (*cw1a*). Two QTL for

cocoon shell weight were identified and located on the LG16 and LG22 with additive effects ranging from -0.0164 (*cshw16c*) to +0.0459 (*cshw22b*) and dominance effects

Figure 3. Frequency distribution of phenotypic values related to the studied traits in the F₂ segregating *Bombyx mori* population derived from mating between the P107 inbred line and the Khorasan Lemon native strain (the mean phenotypic values of the parents for the three traits are shown in Table 3). High quality figures are available online.

		Parent		Difference between
Trait	Line PI07	Khorasan Lemon	F ₂	parents (t-value)
Cocoon weight (g)	1.479±0.230	1.404±0.195	1.707±0.249	6.06*
Cocoon shell weight (g)	0.324±0.029	0.211±0.027	0.296±0.033	43.02*
Cocoon shell percentage (%)	22.23±0.02	15.23±0.02	17.54±1.95	41.99*

I ov/d PargTaci- Tac/Tac) 16/0 2517 4.29 -00735 0.3801 5.278 I ov/d PargTaci- Tac/Tac) 7794 27645 0.03 -0.0350 6.2944 I ov/d PardTaci-PardTaci 7794 2.7645 0.03 -0.0350 6.2943 5 ov/do PardTaci-PardTaci 7201 2.6030 1.48 0.047 -0.3265 5.8913 6 cv/do PardTaci-PardTaci 72.1 3.893 2.01 0.0559 1.367 8.81 Coconsweight 8 cw/do PardTaci-PardTaci 72.757 2.6030 1.48 0.0409 0.0559 1.367 9.81 Coconsweight 16 cw/do PardTaci-PardTaci 3.575 2.8339 1.20 0.0049 0.0559 1.367 9.80 16 cw/do PardTaci-PardTaci 3.574 3.77 0.0733 0.3814 5.318 17 cw/do PardTaci-PardTaci 3.574 3.77 </th <th>I ov/10 Par(Tacl-1) 16.01 2.217 4.29 -0.0735 0.3881 5.278 I ov/1c Par(Tacl-1) 16.01 2.217 2.00 0.99 0.3802 5.294 5 ov/50 Par/Tacl-1 7.94 2.764 0.03 -0.060 -0.3802 5.93 5 ov/50 Par/Tacl-4 7.91 3.892 2.01 -0.055 -0.3142 5.913 6 cv/6 Par/Tacl-4 7.91 3.892 2.01 -0.056 -2.347 9.803 16 cv/16 Par/Tacl-4 7.91 3.892 1.01 -0.0734 -3.377 9.803 17 cv/16 Par/Tacl-4 7.91 3.855 2.8379 1.90 -0.0734 -0.3177 9.803 -3.344 17 cv/17 Par/Tacl-4 7.91 3.72 0.9139 -0.0134 -0.1756 -0.0235 -0.295 -0.295 -0.295 -0.295 -0.2956 -0.2956 -0.235</th> <th>Trait</th> <th>Linkage group</th> <th>QTL</th> <th>Neighboring markers</th> <th>Position (cM)</th> <th>гор</th> <th>R² (%)</th> <th>Additive effect</th> <th>Dominance effect</th> <th>ha</th>	I ov/10 Par(Tacl-1) 16.01 2.217 4.29 -0.0735 0.3881 5.278 I ov/1c Par(Tacl-1) 16.01 2.217 2.00 0.99 0.3802 5.294 5 ov/50 Par/Tacl-1 7.94 2.764 0.03 -0.060 -0.3802 5.93 5 ov/50 Par/Tacl-4 7.91 3.892 2.01 -0.055 -0.3142 5.913 6 cv/6 Par/Tacl-4 7.91 3.892 2.01 -0.056 -2.347 9.803 16 cv/16 Par/Tacl-4 7.91 3.892 1.01 -0.0734 -3.377 9.803 17 cv/16 Par/Tacl-4 7.91 3.855 2.8379 1.90 -0.0734 -0.3177 9.803 -3.344 17 cv/17 Par/Tacl-4 7.91 3.72 0.9139 -0.0134 -0.1756 -0.0235 -0.295 -0.295 -0.295 -0.295 -0.2956 -0.2956 -0.235	Trait	Linkage group	QTL	Neighboring markers	Position (cM)	гор	R ² (%)	Additive effect	Dominance effect	ha
Index PartTack1 7794 27445 0.03 -0.080 -0.3802 2.394 5 cw56 PartTack1 2 26030 0.89 0.0352 -0.3142 -8913 5 cw56 PartTack1 2 2.6030 0.89 0.0352 -0.3142 -8913 6 cw5 PartTack1 2 2.6030 1.44 0.0447 -0.2625 5.800 7 cw5 PartTack1 2 2 2.003 1.48 0.0497 -0.2655 5.800 6 cw6 PartTack1 2 2 2.813 -0.1581 -0.3155 5.880 16 cw166 PartTack1 2 2 2 0.033 -0.0175 -0.2534 17 cw15 PartTack1 2 2 2 0.0337 0.0350 -0.2545 18 cw16 PartTack1 2 2 2 0.0337 0.0350 -0.2545 17 cw17	I cw/c Per/Tage/Tage/Tage/Tage/Tage/Tage/Tage/Tage		_	cwla	Patg/Tacal - Paac/Ttg7	16.01	2.5217	4.29	-0.0735	0.3881	-5.278
5 ow5a ParTaca7-ParTrg6 2201 26030 0.895 0.0352 -0.3142 8913 5 cwb ParTaca7-ParTrg6 72 2.6030 1.44 0.0447 -0.2675 5.890 6 rwb ParTaca16 791 3.8932 2.01 -0.0559 -0.3835 6.838 Cocon weight 6 cwb ParTraca16 791 3.8932 2.01 -0.0559 -0.3835 6.838 Low1 Evold6 ParTraca16 73.557 2.8349 0.97 0.0349 -0.3771 9.807 Li5 cwl6 ParTraca7 72.577 2.8349 0.97 0.0345 -0.3375 19.80 Li7 cwl6 ParTraca7 72.577 2.8349 0.97 0.0733 -0.3866 5.318 Li7 cwl7 ParTrac3 73.75 19.807 0.073 -0.3866 5.318 Li7 cwl6 ParTrac4 17.98 3.7596 1.43 0.043 -0.3167	5 cw5o Par/Tac/Tet/Trig6 2201 26030 0.0352 -0.3142 -8913 5 cw5o Par/Taci/Tet/Trig6 2701 2.6030 1.44 0.0447 -0.2653 -5.860 6 cw6 Par/Taci/Tet/Triad 737 2.8932 2.01 -0.0559 -0.3835 5.863 7 16 cw166 Par/Taci/Tet/Taci/Tot/Taci 2.201 2.0359 1.0355 -0.3377 9.036 -2.337 16 cw166 Par/Taci/Tet/Taci 2.2757 2.6349 0.77 0.0385 -0.3377 9.02 17 cw167 Par/Taci/Tet/Taci 3.747 3.72 -0.0723 -0.3246 5.318 17 cw179 Par/Taci/Tet/Taci 3.747 3.72 -0.0733 -0.3246 5.318 17 cw176 Par/Taci/Tet 3.049 3.779 1.93 0.0385 -0.3171 -9802 17 cw176 Par/Taci/Taci 3.747 4.953 4.915 -0.0723 -0.		_	cwlc	Ptc/Taca I I - Paga/Taag8	77.94	2.7645	0.03	-0.0060	-0.3802	62.944
5 cw5b PartTageFargTaca6 42 2.6020 1:44 0.0447 -0.2625 5.880 Cocoon weight (C.W.) 6 cw6 PartTage14- 79.1 38932 2.01 -0.0559 -0.3835 6.856 Recom weight (C.W.) 16 cw16 PartTage14- 79.1 38932 2.01 -0.0559 -0.38935 6.856 16 cw16 PartTagePartTracci 3.555 2.8339 1.01 -0.0365 -0.3875 1.9802 17 cw16 PartTagePartTracci 3.557 2.8339 1.01 -0.0731 -0.36775 1.9802 17 cw16 PartTagePartTracci 3.5747 3.72 -0.0731 -0.3875 1.883 17 cw19 PartTage1-PartTracci 3.749 1.91 -0.0733 -0.3876 5.318 17 cw19 PartTage14 3.5747 3.72 -0.0733 -0.3876 5.318 17 cw19 PartTage14 3.759 1.738 0.0133	5 cw5b PearTrageFareTrace 42 2.6020 1.44 0.0447 -0.2625 5.880 Croon weight (C.W) 8 cw6 PearTrage14 79.1 3.8932 2.01 -0.0559 -0.3835 6.88 Croon weight (C.W) 16 cw6 PearTrage14 79.1 3.8932 2.01 -0.0559 -0.3835 6.88 Croon weight (C.W) 16 cw167 PearTrage17.1 3.557 2.849 0.97 0.0649 -0.3775 10.86 17 cw167 PearTrage10 3.574 3.72 -0.0723 -0.3846 5.318 17 cw19 PearTrage10 3.574 3.72 -0.0733 -0.3875 10.86 17 cw19 PearTrage1 3.574 3.72 -0.0733 -0.3875 10.86 18 cw190 PearTrage1 49.12 0.0433 -0.0764 3.117 19 cw190 PearTrage1 17.981 3.743 4.1126 0.0733 0.306	_	2	см5а	Pat/Taca7-Ptat/Ttg6	22.01	2.6030	0.89	0.0352	-0.3142	-8.913
6 cw/s Par/Tag14 79.1 3932 2.01 -0.0559 -0.3835 6.858 Ccoon weight (C.W.) 16 cw/l6c Par/Tag14 36.55 2.3329 1.20 -0.0559 1.3677 9.902 Ccoon weight (C.W.) 16 cw/l6c Par/Tag1 3.655 2.3329 1.20 -0.0409 -0.0559 1.3677 16 cw/l6d Par/Tag1 3.655 2.3329 1.01 -0.0347 0.3775 1.9802 17 cw/l6d Par/Tag1 3.649 3.5747 3.72 -0.0723 -0.3775 1.0864 17 cw/l6d Par/Tag10 30.49 3.5747 3.72 -0.0723 -0.3846 5.318 17 cw/l6d Par/Tag1 3.049 3.5747 3.72 -0.0723 -0.3846 5.318 17 cw/l6d Par/Tag1 3.049 3.5747 3.72 -0.0723 -0.3846 5.318 17 cw/l6d Par/Tag1 1.125 1.125	6 cw/c Par(Tagl(4) 791 3892 201 0.0559 -0.3835 6588 Coccon weight (C.W.) 8 cw/6 Par(Tagl(1+) 2201 30872 18.3 -0.1561 0.3590 -2334 I c w/ic Par(Tagl-Faur(Tac) 35.55 2.8329 1.20 0.0409 -00559 1.367 -9.801 I c w/id Par(Tag-Faur(Tac) 7.277 2.8339 1.00 -0.0359 -0.3875 1.387 I c w/id Par(Tag-Faur(Tac) 7.777 2.6349 1.01 -0.035 -0.3875 1.387 I cw/id Paur(Tag-Faur(Tac) 3.759 1.43 0.0433 -0.3877 1.980 I cw/id Paur(Tag-F 49.29 3.759 1.41 0.0433 -0.0365 -3.18 I vij cw/id Paur(Tag-F 49.29 3.759 1.46 -0.026 -0.026 -0.17 I vij cw/id		5	cw5b	Ptat/Ttg6-Patg/Taca6	42	2.6020	1.44	0.0447	-0.2625	-5.880
Cocoon weight (C.W.) a cw/8 Paac/Tage/Par/Tac/1 2201 36375 18.33 -0.1581 0.3560 2.334 (C.W.) 16 cw/16/ Paac/Tage/Tac/1 35.55 28329 1.20 -0.0409 -0.05759 1.367 16 cw/16/ Paac/Tage/Tac/1 37.57 3.534 3.71 3.72 0.0733 -0.3717 9.802 17 cw/17 Paar/Tac/1 3.5747 3.72 0.0733 -0.3846 5.318 17 cw/17 Paar/Tac/1 3.747 3.72 -0.0723 -0.3852 8.891 17 cw/19 Paac/Tac/1 3.5747 3.72 -0.0723 -0.3866 5.318 19 cw/19 Paac/Tac/1 3.7407 3.72 -0.0723 -0.296 3.116 10 contrast 16 cw/19 Paac/Tac/1 3.733 49.12 0.0733 -0.396 5.318 10 contonshell 16 cw/19 Paac/Tac/1 17.980 <t< th=""><td>Coccon weight (C.W) B cw/ls Paar/Trge/Fact/Tac/ Paar/Tag/ (C.W) 2001 30353 0.01581 0.03590 1.2371 9.990 1.3375 1.0360 1.2375 1.337233 1.33723 1.3475</td><td></td><td>6</td><td>cwb</td><td>Ptat/Taag 4- Pat/Taca 0</td><td>79.1</td><td>3.8932</td><td>2.01</td><td>-0.0559</td><td>-0.3835</td><td>6.858</td></t<>	Coccon weight (C.W) B cw/ls Paar/Trge/Fact/Tac/ Paar/Tag/ (C.W) 2001 30353 0.01581 0.03590 1.2371 9.990 1.3375 1.0360 1.2375 1.337233 1.33723 1.3475		6	cwb	Ptat/Taag 4- Pat/Taca 0	79.1	3.8932	2.01	-0.0559	-0.3835	6.858
(C.W) 16 cw/6c Paac/Tack-PtarTract 3.55 2.8329 1.20 0.0409 0.0559 1.367 16 cw/16f Paac/Tack-PtarTract 17.57 2.6349 0.97 0.0385 -0.3771 9.802 16 cw/16f PeracTack-PtarTract 3.049 3.5747 3.73 -0.0723 -0.3864 5.318 17 cw/16 PeracTack-PtarTract 3.049 3.5747 3.73 -0.0723 -0.3864 5.318 17 cw/15 PaacTagVett 49.29 3.7596 1.43 0.0433 -0.3862 -8891 18 cw/19b PaacTagVett 49.29 3.7596 1.43 0.0433 -0.0262 -0.296 -3.18 Coconshell 16 cw/16b PaacTagVett 17981 3.4050 6.53 0.0371 0.826 -3.18 Coconshell 16 cw/12b PaacTagVett 1.7981 3.4050 6.53 0.0143 -0.0262 -0.296 Coconshell <td< th=""><td>(C.W) 16 cw/lc/ Paac/Tack/Teu/Tac/1 3.5.5 2.8329 1.20 0.0409 -0.0559 1.367 16 cw/lc/ Paac/Tack/Teu/Tac2 17.257 2.6349 0.97 0.0385 -0.3775 10.886 17 cw/lc/ Paac/Tack/Teu/Tac2 17.257 3.7347 3.732 -0.0733 -0.3775 10.866 17 cw/lc/ Paac/Tac/1 3.049 3.7596 1.43 0.0433 -0.3862 -8.891 19 cw/lc/ Paac/Tac/1 17.951 3.049 3.7596 1.43 0.0433 -0.3862 -8.891 Coccon shell 16 cs/w/lc/ Paac/Tac/2 17981 3.4050 6.53 0.043 -0.0262 -0.296 Vireit 22 cs/m/lc/ Paac/Tac/2 17981 3.4126 0.016 -0.0361 1.917 Vireit 22 cs/m/lc/ Paac/Tac/2 156.61 3.783 49.12 0.0169 -0.0262 0.2966 Vireit</td><td>Cocoon weight</td><td>8</td><td>cw8</td><td>Paac/Ttg8-Ptat/Ttg7</td><td>22.01</td><td>3.0872</td><td>18.33</td><td>-0.1581</td><td>0.3690</td><td>-2.334</td></td<>	(C.W) 16 cw/lc/ Paac/Tack/Teu/Tac/1 3.5.5 2.8329 1.20 0.0409 -0.0559 1.367 16 cw/lc/ Paac/Tack/Teu/Tac2 17.257 2.6349 0.97 0.0385 -0.3775 10.886 17 cw/lc/ Paac/Tack/Teu/Tac2 17.257 3.7347 3.732 -0.0733 -0.3775 10.866 17 cw/lc/ Paac/Tac/1 3.049 3.7596 1.43 0.0433 -0.3862 -8.891 19 cw/lc/ Paac/Tac/1 17.951 3.049 3.7596 1.43 0.0433 -0.3862 -8.891 Coccon shell 16 cs/w/lc/ Paac/Tac/2 17981 3.4050 6.53 0.043 -0.0262 -0.296 Vireit 22 cs/m/lc/ Paac/Tac/2 17981 3.4126 0.016 -0.0361 1.917 Vireit 22 cs/m/lc/ Paac/Tac/2 156.61 3.783 49.12 0.0169 -0.0262 0.2966 Vireit	Cocoon weight	8	cw8	Paac/Ttg8-Ptat/Ttg7	22.01	3.0872	18.33	-0.1581	0.3690	-2.334
Id cw/6d PaacTat8-PtarTrac2 172.57 2.6349 0.97 0.0385 -0.3771 9.802 Id cw/6f Ptc/Tac3-PtarTrac2 17.257 2.6349 0.97 0.0385 -0.3775 10.886 Id cw/16f Ptc/Tac3-PtarTrac3 247.79 4.9963 1.01 -0.0347 -0.3375 10.886 Id cw/19d PtarCTac3-PtarTrac3 24.79 4.9563 1.01 -0.0347 -0.3375 10.866 Id cw/19d PtarCTac3-PtarTrac3 24.79 4.929 3.7596 1.43 0.0433 -0.3852 8.891 Versit 19 cw/19d PtarCTac3-PtarTrac3 234.79 4.1126 10.04 -0.0164 -0.3852 8.891 Versit 22 cs/102 PtarTac47 179.81 3.456 1.1126 10.04 -0.0164 1.917 Versit 23 ptarTac47 20.01 3.5878 14.64 0.018 1.917 Versit 26.661 37.83	Ic cw/ic/ Paar/Tack/Paar/Tack2 17.2.57 2.6349 0.97 0.0385 -0.3771 9.802 Ic cw/ic/ Paur/Tack7-Paur/Tack3 2.47.79 3.735 1.01 -0.0347 -0.3775 10.886 Ic cw/ic/ Paur/Tack1-Paur/Tack1 3.0.49 3.7596 1.43 0.0433 -0.3846 5.318 Paur/Tack1 cw/ic/ Paur/Tack1 3.0.49 3.7596 1.43 0.0433 -0.3845 5.318 Paur/Tack1 cw/ic/ Paur/Tack1 179.81 3.4050 6.53 0.0887 -0.0262 -0.296 Cocon shell 16 cw/ic/ Paur/Tack1 179.81 3.4050 6.53 0.0087 -0.0262 -0.296 Cocon shell 16 cs/iv/ic Paur/Tack1 15.661 3.7283 49.12 0.0164 -0.0361 1.917 V UCSh.w) 8 cs/iv/ic Paur/Tack1 20.01 3.566 1.916 Paur/Tack1 1.912 0.0164 0.01361	(C.W.)	16	cw16c	Paac/Ttc4-Ptat/Ttacl	36.55	2.8329	1.20	-0.0409	-0.0559	1.367
Ic cw/bf PartTrac3 242.79 4.963 1.01 -0.0347 -0.3755 10.886 17 cw/17 PartTrag10 30.49 35747 3.72 -0.0733 -0.3846 5.318 17 cw/19 PartTrag10 30.49 3.5747 3.72 -0.0733 -0.3846 5.318 19 cw/190 PartTrag16 49.29 3.7596 1.43 0.0433 -0.3845 5.318 Cocon shell 16 cw/19b PartTrag16 49.29 3.7596 1.43 0.0433 -0.3845 5.318 Cocon shell 16 cw/19b PartTrag27 179.81 3.4050 6.53 0.0877 0.0361 1.917 Versitiv 22 cshw/6b PartTrag77 156.61 3.7283 49.12 0.0164 -0.0164 1.917 Versitiv 22 cshw/2b PartTrag77 20.01 3.5878 14.64 0.018 -0.0269 3.155 Versitiv 23 cshp/18<	Icon cw16f PexUTrac3 242.79 4.9963 1.01 -0.0347 -0.3775 10.866 I/7 cw17 PexUTrac1 30.49 35.747 3.72 -0.0723 -0.3846 5.318 I/7 cw19a PexUTrac1 30.49 3.7596 1.43 0.0433 -0.3852 -8.891 I/9 cw19a PearCTac2 173 7356 1.43 0.0433 -0.3852 -8.891 I/9 cw19b PearCTac2 173 34050 6.53 0.0887 -0.0262 -0.296 I/1 cw19b PearCTac2 173 234.79 41.126 10.04 -0.0314 1.917 I/1 coon shell 16 cw19b PearCTac2 173 49.12 0.0459 0.0377 0.0377 0.0326 1.917 I/1 cons con 3.154 1.466 3.783 49.12 0.0184 1.917 I/2 con csh PearCTac2 154.61 1		16	cw16d	Paac/Tat8-Ptat/Ttac2	172.57	2.6349	0.97	0.0385	-0.3771	-9.802
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	IT cwl7 Ptar/Tag10 30.49 3574 3.72 0.0733 0.03846 5318 IP cwl9 pax/Tag210 37596 1.43 0.0433 -0.3852 -8891 IP cwl9b Pax/Tag74- 49.29 3.7596 1.43 0.0433 -0.3852 -8891 Cocon shell Ib cwl9b Pax/Tag7- 17981 3.4550 6.53 0.0887 -0.0262 -0.296 Cocon shell Ib cshw16c Ptax/Tag7- 156.61 3.7283 49.12 0.0459 0.0377 0.820 Vesity 22 cshp16 Pax/Tag7- 156.61 3.7283 49.12 0.0156 -3.059 Vesity 22 cshp16 Pax/Tag7- 156.61 3.7283 49.12 0.0164 -0.0314 1.917 Vesity 23 cshp16 Pax/Tag7- 156.61 2.738 49.12 0.0377 0.820 3.158 Vesity 23 cshp16 Pax/Tag7- <		16	cw16f	Ptc/Taca7-Ptat/Ttac3	242.79	4.9963	10.1	-0.0347	-0.3775	10.886
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{l l l l l l l l l l l l l l l l l l l $		17	cw17	Ptat/Ttgl - Ptat/Taag10	30.49	3.5747	3.72	-0.0723	-0.3846	5.318
I9 cw/9b Paac/Ttc2- Pat/Tagc16 179.81 3.4050 6.53 0.0887 -0.0262 -0.296 Cocoon shell 16 cshw/6c Pct/Tac7-Ptat/Tac7 234.79 4.1126 10.04 -0.0164 -0.0314 1.917 Vereight 22 cshw/6c Pct/Tac7-Ptat/Tag1 216.61 3.7283 49.12 0.0459 0.0377 0.820 Vereight 22 cshp8 Paac/Tag1 156.61 3.7283 49.12 0.0164 -0.0314 1.917 Vereight 22 cshp8 Paac/Tag1 156.61 3.7283 49.12 0.0189 -0.0361 3.059 9 cshp8 Paac/Tag2 0.01 2.9946 8.14 -0.0036 -3.059 16 cshp16 Paac/Tag24 0.01 2.9946 8.14 -0.0035 -14.047 19 cshp16 Paac/Tag24 49.29 3.5142 0.644 -0.0134 -3.468 19 cshp16 Paac/Tag34 15.457 2	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		61	cw19a	Paac/Tagc4- Paac/Tat7	49.29	3.7596	I.43	0.0433	-0.3852	-8.89
Cocoon shell I 6 cshw/6c Pear/Tac7-Pear/Tac3 234.79 4.1126 10.04 -0.0314 1.917 weight (C.Sh.W.) 22 cshw/2b Pear/Tac7- 156.61 3.7283 49.12 0.0459 0.0377 0.820 8 cshp8 Paac/Tag1 20.01 3.5878 14.64 0.0118 -0.0361 -3.059 9 cshp9 Paac/Tag2+ 0.01 2.9946 8.14 -0.00361 -3.059 16 cshp16 Paac/Tag2+ 0.01 2.9946 8.14 -0.0036 -0.0134 3.115 Cocoon shell 19 cshp16 Paac/Tag2+ 0.01 2.9946 8.14 -0.0036 -0.0134 3.115 Paac/Tag2+ 0.01 2.9946 8.14 -0.0036 -0.0134 3.168 19 cshp16 Paac/Tag2+ 49.29 3.5142 0.64 -0.0255 -14.047 Parc/Tag2+ 2314 1.53 0.64 -0.0255 -0.4.047 -14.047 <t< th=""><td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td><td>_</td><td>61</td><td>cw19b</td><td>Paac/Ttc2- Pat/Tagc16</td><td>179.81</td><td>3.4050</td><td>6.53</td><td>0.0887</td><td>-0.0262</td><td>-0.296</td></t<>	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	_	61	cw19b	Paac/Ttc2- Pat/Tagc16	179.81	3.4050	6.53	0.0887	-0.0262	-0.296
weight (C.Sh.W.) 22 cshw22b Ptat/Tag1 Teat/Tag1 I56.6I 3.7283 49.12 0.0459 0.0377 0.820 B cshp8 Paac/Tag2F 156.6I 3.5878 14.64 0.0118 -0.0361 -3.059 B cshp8 Paac/Tag2+ 0.01 3.5878 14.64 0.0118 -0.0361 -3.059 B cshp16 Ptat/Tag2+ 0.01 2.9946 8.14 -0.0086 -0.0164 3.115 Cocoon shell 19 cshp16 Paac/Tag2+ 0.01 2.9946 8.14 -0.0086 -0.0269 3.115 Cocoon shell 19 cshp16 Paac/Tag2+ 0.01 2.5384 1.53 0.0039 -0.0134 2.16407 Percentage 19 cshp19 Paac/Tag2+ 49.29 3.5142 0.64 -0.0025 0.0335 -14.047 Percentage 19 cshp19 Pat/Tat1-PatA1 49.29 3.5142 0.64 -0.0025 0.0335 -14.047 <t< th=""><td></td><td>Cocoon shell</td><td>16</td><td>cshw16c</td><td>Ptc/Taca7-Ptat/Ttac3</td><td>234.79</td><td>4.1126</td><td>10.04</td><td>-0.0164</td><td>-0.0314</td><td>1.917</td></t<>		Cocoon shell	16	cshw16c	Ptc/Taca7-Ptat/Ttac3	234.79	4.1126	10.04	-0.0164	-0.0314	1.917
8 cshp8 Paac/Tug8-Ptat/Tug7 20.01 3.5878 14.64 0.0118 -0.0361 -3.059 9 cshp9 Ptat/Tagc4- 0.01 2.9946 8.14 -0.0086 -0.0269 3.115 16 cshp16 Paac/Tagc4- 0.01 2.9946 8.14 -0.0086 -0.0269 3.115 Cocoon shell 19 cshp16 Paac/Tagc4- 49.29 3.5142 0.64 -0.0134 2.3468 Percentage 19 cshp23a Pat/Tagt1-Ptat/Tag2 154.57 2.5384 1.53 0.0039 -0.0134 2.3468 Cocoon shell 19 cshp23a Pat/Tagt1-Ptat/Tag3 2.01 4.5747 61.68 -0.0255 -0.936 23 cshp23a Pat/Taga1-Ptat/Tag3 2.01 4.5747 61.68 -0.0372 0.0352 -14.047 23 cshp23b Ptat/Tag3- 21.41 4.6637 69.18 -0.0347 0.0255 -0.936 23 cshp23d Pat/Tag3- 21.41<	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	weight (C.Sh.W.)	22	cshw22b	Ptat/Ttac7- Ptat/Taagl	156.61	3.7283	49.12	0.0459	0.0377	0.820
9 cshp9 Ptat/Tagc4- Paac/Tagc5 0.01 2.9946 8.14 -0.0086 -0.0269 3.115 16 cshp16 Paac/Tagc5 154.57 2.5384 1.53 0.0039 -0.0134 -3.468 Cocoon shell percentage 19 cshp16 Paac/Tagc4- Paac/Tat7 49.29 3.5142 0.64 -0.0134 -3.468 Cocon shell percentage 19 cshp23 Paac/Tagc4- Paac/Tat7 49.29 3.5142 0.64 -0.0255 14.047 Cocon shell percentage 19 cshp23 Pat/Taag4- Paac/Tat7 49.29 3.5142 0.64 -0.0255 0.0352 -14.047 CS.N-N 23 cshp23 Pat/Taag3- Pat/Taag3- Pat/Taag3- 2.141 4.6637 69.18 -0.0255 0.0355 -0.936 23 cshp23 Pata/Taag3- Pat/Taag1- Pata/Taag3- Pata/Patag3- Pata/Patag3 Patag3 Pata/Patag3- Patag3	$ \begin{array}{l l l l l l l l l l l l l l l l l l l $		8	cshp8	Paac/Ttg8-Ptat/Ttg7	20.01	3.5878	14.64	0.01 18	-0.0361	-3.059
I6 cshp16 Paac/Tat8-Ptat/Tac2 I54.57 2.5384 I.53 0.0039 -0.0134 3.3468 Cocoon shell 19 cshp19a Paac/Tat6- 49.29 3.5142 0.64 -0.0035 14.047 Percentage 2.3 cshp23a Pat/Tat7 49.29 3.5142 0.64 -0.0255 0.0352 14.047 Percentage 2.3 cshp23a Pat/Taat1-Ptat/Taag3 2.01 4.5747 61.68 -0.0272 0.0355 -0.936 2.3 cshp23a Pat/Taat1-Ptat/Taag3 2.01 4.5747 61.68 -0.0272 0.0355 -0.936 2.3 cshp23a Pat/Taag1-Ptat/Taag3 2.01 4.5637 69.18 -0.0347 0.0007 -0.036 2.3 cshp23d Pat/Taag1- 71.99 4.764 -0.0369 0.0107 -0.020 2.3 cshp23d Pat/Taag1- 71.99 4.764 -0.0309 0.0210 -0.020	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		6	cshp9	Ptat/Tagc4- Paac/Tagc5	0.01	2.9946	8.14	-0.0086	-0.0269	3.115
Cocoon shell 19 Paac/TagC4- Paac/Tag7 49.29 3.5142 0.64 -0.0025 0.0352 -14.047 percentage (C.Sh.P.) 23 cshp13a Pat/Tag1-Ptat/Tag3 2.01 4.5747 61.68 -0.0255 -0.936 -0.936 23 cshp23b Ptat/Tag3- Pat/Tag3- Pat/Tag3- 2.01 4.5747 61.68 -0.0272 0.0255 -0.936 23 cshp23b Ptat/Tag3- Pat/Taca14 21.41 4.6637 69.18 -0.0347 0.0007 -0.020 23 cshp23d Pat/Tag1- Pag/Taca1 71.99 4.764 -0.0309 0.0210 -0.678	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		16	cshp16	Paac/Tat8-Ptat/Ttac2	154.57	2.5384	I.53	0.0039	-0.0134	-3.468
(C.Sh.P.) 23 cshp23a Pat/Taat1-Ptat/Taag3 2.01 4.5747 61.68 -0.0272 0.0255 -0.936 23 cshp23b Ptat/Taag3- Pat/Taag1- 21.41 4.6637 69.18 -0.0347 0.0007 -0.020 23 cshp23d Pat/Taag1- Pat/Taag1- 71.99 4.7663 47.64 -0.0309 0.0210 -0.678	(C.Sh.P.) 23 $cshp23a$ Pat/Taat1-Ptat/Tag3 2.01 4.5747 61.68 -0.0272 0.0255 -0.936 23 $cshp23b$ Ptat/Tag3- 21.41 4.6637 69.18 -0.0347 0.0007 -0.020 23 $cshp23b$ Pat/Taca14 21.41 4.6637 69.18 -0.0347 0.0007 -0.020 23 $cshp23d$ Pac/Taca14 71.99 4.764 -0.0309 0.0210 -0.678 e ratio dominance/additive effects. Under dominance or recessive if $h < 0$, additive if $h=0.0.20$, partial dominance if $h=0.21-0.80$, dominance if $h=0.81-1.20$, and or inance if $h > 1.20$ (Stuber et al. 1987). -0.0309 0.0210 -0.678	Cocoon shell percentage	61	cshp19a	Paac/Tagc4- Paac/Tat7	49.29	3.5142	0.64	-0.0025	0.0352	-14.047
23 Cshp23b Ptat/Taag3- Par/Tacal4 21.41 4.6637 69.18 -0.0347 0.0007 -0.020 23 cshp23d Pac/Taag11- Paag/Tacal 71.99 4.7863 47.64 -0.0309 0.0210 -0.678	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	(C.Sh.P.)	23	cshp23a	Pat/Taatl-Ptat/Taag3	2.01	4.5747	61.68	-0.0272	0.0255	-0.936
23 cshp23d Pac/Tagel1- 71.99 4.7863 47.64 -0.0309 0.0210 -0.678	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		23	cshp23b	Ptat/Taag3- Pat/Taca14	21.41	4.6637	69.18	-0.0347	0.0007	-0.020
	e ratio dominance/additive effects. Under dominance or recessive if h < 0, additive if h=0-0.20, partial dominance if h=0.21-0.80, dominance if h=0.81-1.20, and o inance if h > 1.20 (Stuber et al. 1987). 0.01		23	cshp23d	Pac/Taag11- Paag/Taca1	71.99	4.7863	47.64	-0.0309	0.0210	-0.678

ranging from -0.0314 (*cshw16c*) to +0.037 (*cshw22b*). Finally, fourteen QTL were identified for cocoon shell percentage located on the LG8, LG9, LG16, LG19, and LG23. The additive effects of these QTL ranged from -0.0347 (*cshp23b*) to +0.0118 (*cshp8*), and their dominance effects ranged from -0.0361 (*cshp8*) to + 0.0352 (*cshp19a*) (Table 4).

The explained variation rate by QTL controlling cocoon weight, cocoon shell weight, and cocoon shell percentage ranged from 0.02% to 64.85%, 0.2% to 49.11%, and 0.04% to 84.20%, respectively (Table 4).

Discussion

In the present study, an AFLP-based linkage map containing 159 AFLP markers in a total

length of 2747 cM and an average marker resolution of 19.31 cM was developed for B. mori. Using this map, a total of 21 AFLP markers linked to cocoon weight, cocoon shell weight, and cocoon shell percentage were identified using a composite interval mapping method (Table 4). Recently, 11 QTL (Lu et al. 2004) and 40 OTL (Li et al. 2006) for whole cocoon weight, cocoon shell weight, ratio of shell weight and weight of pupae have been Javadi Taklimi reported. and (2006)accounted 5 QTL controlling ratios of shell weight in a backcrossed population (BC_1) of B. mori. These differences may be due to sample size, number and type of primer combinations used, and crosses established. Though apart from employing different primer pairs, Lu et al. (2004) and Li et al. (2006) used 44 BC₁ progenies, and Javadi Taklimi (2006)

Journal of Insect Science | www.insectscience.org

applied only seven polymorphic primer combinations. Practically, factors such as the number of molecular markers used, types of crosses, sample size of segregating population, number of genes controlling the traits, and existence of gene interaction may influence the statistical power of QTL mapping (Zhong et al. 2006).

It seems that some QTL had pliotropic effects on the traits. One QTL controlling both cocoon weight and cocoon shell weight traits located on the LG16 between neighboring markers Ptc/Taca7-Ptat/Ttac3 was observed. In addition, three QTL were observed controlling both cocoon weight and cocoon shell percentage traits located on the LG8, LG16, and LG19 between neighboring markers Paac/Ttg8-Ptat/Ttg7, Paac/Tat8-Ptat/Ttac2 and Paac/Tagc4-Paac/Tat7.

A total of 19.35% of clearly readable and qualified AFLP bands were polymorphic between the P107 inbred line and the Khorasan Lemon native strain of *B. mori*. A higher level (61%) of polymorphic AFLP marker has been reported by Tan et al. (2001) in a single backcross (no. 782 and od100) family of *B. mori*. To explain this approach, they discussed several factors:

1. Employing two distinct *B. mori* strains in the present study, P107 and Khorasan Lemon are two examples of distinct silkworm inbred lines and strains. The former is from the Japanese bivoltine system and the latter is from the Iranian native monovoltine system.

- Detecting high levels of polymorphisms by the AFLP technique (Huys et al. 1996; Latorra et al. 1996; Mackill et al. 1996; Wan et al. 1999)
- 3. A large fraction of the silkworm genome consists of families of transposable elements such as *Bm1*, *BMC1* (a member of the *LINE1* family), *mariner*, *mariner*-like elements (*Bmmar1*), long terminal repeat transposons (LTRs), non-long terminal transposons (nonLTRs), and others (Ueda et al. 1986; Herrer and Wang 1991; Xiong and Eickbush 1993; Xiong et al.1993; Robertson and Asplund 1996; Tomita et al. 1997; Shimizu et al. 2000; Wang et al. 2000).

Among the 20 pairs of AFLP primer combinations applied in this study, an average of 9.2 polymorphic AFLP markers per primer combination for linkage analysis and QTL mapping was recognized. This rate was considerably lower than two other AFLP linkage and QTL mapping studies on silkworm with 35.7 (Tan et al. 2001) and 36.4 (Lu et al. 2004) fragments per primer. This may be due to the degree of differences between parental lines and strains and the primer combinations used.

The present AFLP map consisted of 24 linkage groups, whereas the haploid genome of B. mori has 28 chromosomes. As Promboon et al. (1995), Young et al. (1998), and He (1998) reported, this may be due to nonequivalence between the number of linkage groups and the number of chromosomes. In the RFLP based linkage map by Goldsmith (1991), 15 linkage groups were reported. However, by using morphological (Doira et al. 1992), RAPD (Yasukochi et al. 1998), RFLP (Nguu et al. 2005), AFLP (Sima

et al. 2006), and SNP (Yamamoto et al. 2006) markers, 28 linkage groups and using SSR (Miao et al. 2005) markers, 29 linkage groups have been recognized in *B. mori*. It has also been shown that the large number of chromosomes in the haploid *B. mori* genome (n = 28), typical of Lepidoptera, makes it difficult to construct maps without missing some chromosomes (Yasukochi 1998).

The whole cocoon weight, cocoon shell weight, and cocoon shell percentage are the major economic traits in B. mori that are controlled by a polygene (Li et al. 2006). In the present study, a single F_2 population derived from a cross between P107 Japanese inbred line and Khorasan Lemon Iranian native strain was used as the mapping population. Among the 21 QTL for the traits studied, one QTL had dominance effect, 13 QTL had under dominance or recessive effects, and seven QTL had over dominance effects (Table 4). Li et al. (2006) in a backcrossed population (BC1) derived from a cross between C₁₀₀ and Dazao detected 40 QTL for whole cocoon weight and related traits, of which 19 were additive effect QTL and 21 were reduced effects QTL.

In summary, 159 AFLP markers were employed to construct a linkage map for B. mori, with an average marker resolution of 19.31 cM. We identified 21 QTL (n = 21)using the composite interval mapping method that affects whole cocoon weight and related traits. The effects of these QTL were under dominance, dominance, and over dominance. Since AFLP amplification is highly reproducible, the development of an AFLP map and subsequently linkage the identification of strain-specific markers for tracking allele frequency changes and quantitative trait loci (QTL) analysis for economically important traits provides an invaluable tool for improving *B. mori* breeds, strains, and hybrids in order to enhance the silk production.

Acknowledgments

This work was supported by funds from Agricultural Biotechnology Research Institute of Iran (ABRII) under the supervision of Agricultural Research Education and Organization (AREO) (an organization of the Ministry Jihad-e Agriculture) and Agricultural Biotechnology Research Institute of North Region (Rasht). We thank Mr. Moeineddin Mavvajpour (the director) and Dr. Alireza Seydavi (the adviser) from ISRC (Iran Silkworm Research Centre) for establishing silkworm crosses and phenotypic information and for their invaluable advice. The technical assistance of the staff of ISRC is gratefully acknowledged. We are also grateful to Mohammad Naserani for contribution of data and typing of phenotypic records in Excel, for editing and inputing data in the linkage map and QTL software for further analysis.

References

Abe H, Harada T, Kanehara M, Shimada T, Ohbayashi F, Oshiki T. 1998. Genetic mapping of RAPD markers linked to the densonucleosis refractoriness gene, *nsd-1*, in the silkworm, *Bombyx mori. Genes and Genetic Systems* 73: 237-42.

Abe H, Sugasaki T, Kanehara M, Shimada T, Gomi ST, Ohbayashi F. 2000. Identification and genetic mapping of RAPD markers linked to the densonucleosis refractoriness gene, *nsd-2*, in the silkworm, *Bombyx mori. Genes and Genetic Systems* 75: 93-96.

Causse MA, Fulton TM, Cho YG, Ahn SN, Chumwongse J, Wu K, Xiao J, Yu Z, Ronald PC, Hanington SE, Second G, McCouch SR, Tanksley SD. 1994. Saturated molecular map of the rice genome based on an interspecific backcross population. *Genetics* 138: 1251-1274.

Chatterjee SN, Pradeep AR. 2003. Molecular markers (RAPD) associated with growth, yield and origin of the silkworm, *Bombyx mori* L. in India. *Genetika* 39: 1612-24.

Chatterjee SN, Mohandas TP. 2003. Identification of ISSR markers associated with productivity traits in silkworm, *Bombyx mori* L. *Genome* 46: 438- 47.

Chen K, Yao Q, Li M, Wang Y. 2003. Screening of RAPD markers for fluoride resistance in *Bombyx mori* L. International Journal *of* Industrial Entomology 7: 11-14.

Churchill GA, Doerge RW. 1994. Empirical threshold values for quantitative trait mapping. *Genetics* 138: 963-971.

Dalirsefat SB, Mirhoseini SZ. 2007. Assessing genetic diversity in Iranian native silkworm (*Bombyx mori* L.) strains and Japanese commercial lines using AFLP markers. *Iranian Journal of Biotechnology* 5(1): 25-33.

Doira H, Fujii H, Kawaguchi Y, Kihara H, Banno Y. 1992. Important Genetic Resources. In: *Genetic Stocks and Mutations of Bombyx mori*. p 73. Isseido Press.

Erickson DL, Fenster BC, StenØien HK, Price D. 2004. Quantitative trait locus analyses and the study of evolutionary process. *Molecular Ecology* 13: 2505-2522.

Gage LP. 1974. The *Bombyx mori* genome: Analysis by DNA reassociation kinetics. *Chromosoma* 45: 27-42.

Journal of Insect Science: Vol. 10 | Article 153

Goldsmith MR. 1991. The *Bombyx mori* genome-mapping project. *Sericologia* 31: 145-155.

Goldsmith MR, Shimada T, Abe H. 2005. The genetics and genomics of the silkworm, *Bombyx mori. Annual Review of Entomology* 50: 71-100.

Harushima Y, Yano M, Shomura A, Sato M, Shimano T, Kuboki Y, Yamamoto T, Lin SY, Antonio BA, Parco A, Kajiya H, Huang N, Yamamoto K, Nagamura Y, Kurata N, Khush GS, Sasaki T. 1998. High-density rice genetic linkage map with 2275 markers using a single F2 population. *Genetics* 148: 479-494.

He NJ. 1998. *Construction of the molecular linkage map of the silkworm (Bombyx mori L.).* Ph.D. Thesis, Southwest Agricultural University, Chongqing, China.

He LJ, Lu C, Li B, Zhou ZY, Xiang ZH. 2001. The construction of linkage map of *Bombyx mori* by combination of SADF and RAPD. *Acta Entomologia Sinica* 44(4): 476-482. (in Chinese)

Herrer RJ, Wang J. 1991. Evidence for a relationship between the *Bombyx mori* middle repetitive Bm1 sequence family and U1 snRNA. *Genetica* 84: 31-37.

Huys G, Coopman R, Janssen P, Kersters K. 1996. High-resolution genotypic analysis of the genus Aeromonas by AFLP fingerprinting. *International Journal of Systematic Bacteriology* 46: 572-580.

Javadi Taklimi SA. 2006. *Identification QTL controlling cocoon shell percentage in silkworm*. M.Sc. dissertation, Faculty of Agricultural Science, University of Guilan.

Kadono-Okuda K, Ogoyi DO, Nohata J, Sasanuma S, Sasanuma M, Eguchi R, Hara W, Yamamoto K, Mita K. 2003. Sequence analysis of BAC contigs covering a densovirus-nonsusceptibility gene, *nsd-2* in *Bombyx mori*. Lepidoptera Abstracts. Presented at the Sixth International *Workshop Molecular Biology and Genetics of Lepidoptera*, Kolymbari, Crete.

Kosambi DD. 1944. The estimation of map distance from recombination values. *Annals of Eugenics* 12: 172-175.

Latorra D, Schanfield MS. 1996. Analysis of human specificity in AFLP systems APOB, PAH, and D1S80. Forensic Science International 83: 15-25.

Li B, Lu C, Zhou ZY. 2000. The Construction of RAPD linkage map of *Bombyx mori*. *Acta Genetica Sinica* 27(2): 127-132. (in Chinese)

Li B, Lu C, Zhao AC, Xiang ZH. 2006. Multiple interval mapping for whole cocoon weight and related economically important traits QTL in silkworm (*Bombyx mori*). *Agricultural Sciences in China* 5(10): 798-804.

Li M, Yao Q, Hou C, Cheng L, Chen K. 2001. Studies on RAPD markers linked to the densonucleosis refractoriness gene, *nsd-Z*, in the silkworm, *Bombyx mori. Sericologia* 41: 409-415.

Lu C, Li B, Zhao AC, Xiang ZH. 2004. QTL mapping of economically important traits in Silkworm (*Bombyx mori*), *Science in China Series C Life Sciences* 47(5): 477-484.

Mackill DJ, Zhang Z, Redona ED, Colowit PM. 1996. Level of polymorphism and genetic mapping of AFLP markers in rice. *Genome* 39: 969-977.

Manly KF, Cudmore JR, Meer JM. 2001. Map Manager QTX: Cross-platform software for genetic mapping. *Mammalian Genome* 12: 930-932.

Miao XX, Xu SJ, Lia MH, Lia MW, Huang JH, Dai FY, Marino SW, Mills DR, Zeng P, Mita K, Jia SH, Zhang Y, Liu WB, Xiang H, Guo QH, Xu AY, Kong XY, Lin HX, Shi YZ, Lu G, Zhang X, Huang W, Yasukochi Y, Sugasaki T, Shimada T, Nagaraju J, Xiang ZH, Wang SY, Goldsmith MR, Lu C, Zhao GP, Huang YP. 2005. Simple sequence repeat-based consensus linkage map of *Bombyx mori. Proceedings of the National Academy of Sciences U.S.A.* 102: 16303-16308.

Mirhoseini SZ, Dalirsefat SB, Pour Khairandish M. 2007. Genetic characterization of Iranian native *Bombyx mori* strains by using amplified fragment length polymorphism markers. *Journal of Economic Entomology* 100(3): 939-945.

Nagaraja GM, Nagaraju J. 1995. Genome fingerprinting in silkworm, *Bombyx mori*, using random arbitrary primers. *Electrophoresis* 16: 1633-1638.

Nagaraju J, Goldsmith MR. 2002. Silkworm genomics-progress and prospects. *Current Science* 83: 415-425.

Nguu EK, Kadono-Okada K, Mase K, Kosegawa E, Hara W. 2005. Molecular linkage map for the silkworm, *Bombyx mori*, based on restriction fragment length polymorphism of cDNA clones. *Journal of Insect Biotechnology and Sericology* 74: 5-13.

Promboon A, Shimada T, Fujiwara H, Kobayashi M. 1995. Linkage map of RAPDs in the silkworm, *Bombyx mori. Genetics Research* 66: 1-7. Qi X, Stam P, Lindhout P. 1997. Use of the locus specific AFLP markers to construct a high density molecular map in barley. *Theoretical and Applied* Genetics 96: 376-384.

Robertson HM, Asplund ML. 1996. Bmmar1: A basal lineage of the mariner family of transposable elements in the silkworm moth, *Bombyx mori. Insect Biochemistry and Molecular Biology* 26: 945-954.

Shi J, Heckel DG, Goldsmith MR. 1995. A genetic linkage map for the domesticated silkworm, *Bombyx mori*, based on restriction fragment length polymorphisms. *Genetics Research* 66: 109-126.

Shimizu K, Kamba M, Sonobe H, Kanda T, Klinakis AG, Savakis C, Tamura T. 2000. Extrachromosomal transposition of the transposable element minos occurs in embryos of the silkworm *Bombyx mori. Insect Molecular Biology* 9: 277-281.

Sima YH, Li B, Chen DX, Sun DB, Zhao AC, Zhang L, Lu C, He SM, Xiang ZH. 2006. Construction and analysis of an AFLP molecular linkage map of the silkworm (*Bombyx mori*). *Chinese Journal of Agricultural Biotechnology* 3(1): 25-31.

Stuber CW, Edwards MD, Wendel JF. 1987. Molecular markers facilitated investigations of quantitative trait loci in maize. II. Factors influencing yield and its component traits. *Crop Science* 27: 639-648.

Suzuki Y, Gage LP, Brown DD. 1972. The genes for fibroin in *Bombyx mori. Journal of Molecular Biology* 70: 637-649.

Tamura T, Thibert C, Royer C, Kanda T, Eappen A, Kamba M, Kômoto N, Thomas JL, Mauchamp B, Chavancy G, Shirk P, Fraser M, Prudhomme JC, Couble P. 2000. Germline transformation of the silkworm, *Bombyx mori* L. using a piggyBac transposon-derived vector. *Nature Biotechnology* 18: 81-84.

Tan YD, Ma RL. 1998. Estimates of lengths of genome and chromosomes of rice using molecular markers. *Journal of Biomathematics* 13:1022-1027. (in Chinese)

Tan YD, Wan CL, Zhu YF, Lu C, Xiang Z, Deng HW. 2001. An amplified fragment length polymorphism map of the silkworm, *Genetics* 157(3): 1277-1284.

Tomita M, Munetsuna H, Sato T, Adachi T, Hino R, Hayashi M, Shimizu K, Nakamura N, Tamura T, Yoshizato K. 2003. Transgenic silkworms produce recombinant human type III procollagen in cocoons. *Nature Biotechnology* 21: 52-56.

Tomita S, Sohn BH, Tamura T. 1997. Cloning and characterization of a mariner-like element in the silkworm, *Bombyx mori. Genes and Genetic Systems* 72: 219-228.

Ueda H, Mizuno S, Shimura K. 1986. Transposable genetic element found in the 5'-flanking region of the fibroin H-chain gene in a genomic clone from the silkworm *Bombyx mori. Journal of Molecular Biology* 190: 319-327.

Vos P, Hogers R, Bleeker M, Reijans M, Lee TVD, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M. 1995. AFLP: A new technique for DNA fingerprinting. *Nucleic Acids Research* 23: 4407-4414.

Wan CL, Zhu YF, Tan YD, Lu C. 1999. Application of AFLP markers to detection of genetic polymorphic loci in the silkworm (*Bombyx mori, L.*). *Biotechnology* 9: 4-9. (in Chinese) Wang S, Basten CJ, Zeng ZB. 2007. *Windows QTL cartographer* Version 2.5. *Statistical Genetics*, North Carolina State University, USA.

Wang W, Swevers L, Iatrou K. 2000. Mariner (Mos1) transposase and genomic integration of foreign gene sequences in *Bombyx mori* cells. *Insect Molecular Biology* 9: 145-155.

Waugh R, Bonar N, Baird E, Thomas B, Graner A, Thos WTB, Powell W. 1997. Homology of AFLP products in three mapping populations of barley. *Molecular Genetics and Genomics* 255: 311-321.

Wu R, Ma CX, Casella G. 2007. *Statistical Genetics of Quantitative Traits-Linkage, Maps, and QTL*. Springer.

Xiong Y, Eickbush TH. 1993. Dong, a nonlong terminal repeat (non-LTR) retrotransposable element from *Bombyx mori*. *Nucleic Acids Research* 21: 1318.

Xiong Y, Burke WD, Eickbush TH. 1993. Pao, a highly divergent retrotransposable element from *Bombyx mori* containing long terminal repeats with tandem copies of the putative R region. *Nucleic Acids Research* 21: 2117-2123.

Yamamoto K, Narukawa J, Kadono-Okuda K, Nohata J, Sasanuma M, Suetsugu Y, Banno Y, Fujii H, Goldsmith MR, Mita K. 2006. Construction of a single nucleotide polymorphism linkage map for the silkworm, *Bombyx mori*, based on bacterial artificial chromosome end sequences. *Genetics* 173: 151-161.

Yamao M, Katayama N, Nakazawa H, Yamakawa M, Hayashi Y, Hara S, Kamei K, Mori H. 1999. Gene targeting in the silkworm by use of a baculovirus. *Genes and Development* 13: 511-516. Yao Q, Li MW, Wang Y, Wang WB, Lu J, Dong Y, Chen KP. 2003. Screening of molecular markers for NPV resistance in *Bombyx mori* L. (*Lep., Bombycidae*). Journal of Applied Entomology 127(3): 134-136.

Yasukochi Y. 1998. A dense genetic map of the silkworm, *Bombyx mori*, covering all chromosomes based on 1018 molecular markers. *Genetics* 150: 1513-1525.

Young WP, Wheeler PA, Coryell VH, Keim P, Thorgaard GH. 1998. A detailed linkage map of rainbow trout produced using doubled haploids. *Genetics* 148: 839-850.

Zabeau M, Vos P. 1992. Selective restriction fragment amplification: A general method for DNA fingerprinting, European Patent Application no. 92402629.7, publication no. 0 534 858 Al.

Zhong D, Menge DM, Temu EA, Chen H, Yan G. 2006. Amplified fragment length polymorphism mapping of quantitative trait loci for malaria parasite susceptibility in the Yellow Fever mosquito *Aedes aegypti*. *Genetics* 173: 1337-1345.

!