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Introduction
In 2001, because of diesel exhaust (DE)–related health con-
cerns, the Environmental Protection Agency (EPA) and the 
California Air Resources Board (CARB) issued new standards 
for diesel fuels and exhaust emissions. To meet the new exhaust 
emission standards, manufacturers made improvements to tra-
ditional diesel engines, referred to here as pre–2007-compliant 
diesel engines, using new engineering technologies. Diesel 
engines with the new technologies are often referred to as new 
technology diesel engines (NTDEs) and are referred to here as 
2007-compliant diesel engines. This distinction is made here 
to emphasize that the diesel engine used in the Advanced 
Collaborative Engine Study (ACES) was a 2007-compliant 
diesel engine. Accordingly, we review some pre–2007-compli-
ant diesel engine studies and findings, to compare with our 
results, obtained as part of the ACES project. Although some 
of these data have been presented in prior publications,1,2 our 
emphasis in this discussion is to (1) highlight the contrast in 

findings between pre–2007-compliant and 2007-compliant 
diesel engines, (2) provide in-depth discussion of study charac-
teristics making the ACES unique, and (3) to discuss potential 
ACES advantages and limitations of study, possibly influenc-
ing the results. 

Pre-2007 diesel engine biomarker studies

Since the early 1900s, research has been performed to investi-
gate the health effects of exposure to diesel emissions. Here, we 
highlight some of those early studies for comparison with our 
research of 2007-compliant diesel engines, to set the context 
for the results of the ACES project.

Studies of DE particulate extract.  From 1954 to 1955, Kotin 
et al3,4 investigated the toxic and carcinogenic potential of DE 
particulate (DEP) collected under varying engine performance 
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conditions. Table 1 illustrates how diesel emission composition 
changes, under the varying engine revolutions per minute and 
loads parameters that were used. C57BL and A-strain mice 
were skin painted with acetone extracts of DEP 3 times a week 
(30 µL) up to 24 months. The authors found different toxic 
effects of DEP extracts that were animal strain dependent and 
sex dependent. As shown in Table 2, they initially found low 
tumor induction due to toxicity. However, A-strain females 
were sufficiently resistant to the toxic effects of the extracts, 
such that tumors were provided sufficient time for formation to 
occur. C57BL mice (both male and female) had a 64% survival 
rate at the time of the appearance of the first tumor and pro-
duced only 2 tumors by the end of the experiment, 22 months 
later. Male and female A-strain mice had a 16% and 80% sur-
vival rate, respectively, at the time of first tumor appearance. 
A-strain males produced a total of 4 tumors, whereas A-strain 
females produced a total of 17 tumors, by the end of the experi-
ment (23 and 17 months, respectively). Although there were 
some differences in the number and timing of tumors, the 
investigators concluded that DEP extracts were both toxic and 
carcinogenic.3,4

Subsequently, in mutagenicity studies (Ames Assay) of 
DEP fractionated extracts, Huisingh et  al,5 found that the 
majority of mutations were from the neutral (uncharged) 
fraction which contained the polynuclear aromatics, phenols, 

ethers and ketones. These studies were the first data indicat-
ing the potential of DEP extracts to promote DNA 
mutations.

More recently, in 1999, Hiura et al proposed that DEP acts 
as an adjuvant, and that it is the organic adherents on the DEP 
particles that are responsible for its pro-inflammatory and tis-
sue damaging effects. Using an in vitro approach, stock DEP 
was suspended in phosphate-buffered saline, diluted in cell 
media (doses: 50, 100, 200, 400 µg/mL), and added to the cell 
cultures. In both murine and human macrophage cell lines, 
exposed to increasing levels of DEP, the appearance of bleb-
bing and apoptotic bodies was associated with increased cell 
death. Those findings were in contrast to a simultaneously 
studied bronchial epithelial cell line, which lacked this toxic 
response.6 In addition, when the macrophage cell lines were 
exposed to either washed DEP or carbon black, modeling the 
carbonaceous center of DEP particles, no toxic effects were 
detected. Those findings implicated DEP particulate adher-
ents, and not the particle carbonaceous center, in the toxic 
effects seen. Furthermore, pretreatment with an antioxidant 
reversed apoptotic effects of DEP; for example, pretreatment 
with N-acetylcysteine, in these experiments, inhibited apopto-
sis by 80%.6 The authors concluded that macrophage cell lines 
exposed to DEP underwent apoptosis as a result of the induc-
tion of reactive oxygen species (ROS).6

Table 1.  Aromatic hydrocarbon estimated on 1-minute samples of pre–2007-compliant diesel engine exhaust with varying load and engine revolution 
speed under conditions of inefficient operation.

Quantities expressed in micrograms per minute

rpm Load Condition Pyrene Compound X 3,4-Benzpyrene 1,12-Benzperylene Anthanthrene

1000 0 Inefficient 
operation

137 22 146 22 0

  ¼ 267 76 465 42 43

  ½ 586 175 772 124 223

  ¾ 1800 640 1320 610 472

  1 2500 639 876 1265 469

1200 0 208 0 9 79 4.3

  ¼ 257 0 47 40 24

  ½ 448 278 437 171 197

  ¾ 888 488 432 930 820

  1 1912 614 1706 976 944

1400 0 188 0 80 0 20

  ¼ 177 56 78 0 16

  ½ 220 76 1372 368 69

  ¾ 734 337 982 1071 577

  1 822 346 1687 944 666

Adapted from Kotin et al.4
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Although there are many other exemplary studies compre-
hensively reviewed by Claxton,8–12 the above studies of particu-
late extracts of DEP are examples that demonstrated the 
mutagenic potential of DEP components, in rodent and bacte-
rial systems. However, the effects of direct inhaled DEP expo-
sure on mutagenesis remained controversial, until the late 
1990s, when a number of in vivo animal studies were under-
taken and demonstrated that inhaled DEP could also promote 
mutagenic potential, as outlined below.

Studies of DE particulates in vivo.  In 1987, Mauderly et  al13 
performed a lifetime inhalation study of pre–2007-compliant 
diesel engine exhaust emissions (as shown in Table 3) in F344/
CR male and female rats. The rats were exposed 7 h/d, 5 d/wk, 
for up to 30 months to whole exhaust diluted to a nominal 
soot concentration of 0.35 mg/m3 (low), 3.5 mg/m3 (medium), 
or 7.0 mg/m3 (high) or to filtered air. At 24 months, analysis of 
DE soot lung burden averaged 0.6, 11.5, and 20.8 mg in the 
low-dose, medium-dose, and high-dose groups, respectively. 

There was little difference in survival between the control and 
high-dose groups with respect to DE soot lung burden. His-
tologically, both active and chronic inflammations were 
observed at focal accumulations of DEP in lung macrophages, 
mainly in alveoli adjacent to the bronchial terminals. Epithe-
lial cell–lined air spaces also were altered with fibrosis near 
sites of DEP accumulation, with sites of epithelial hyperplasia 
and squamous cell metaplasia, located next to fibrotic loci. 
Both benign bronchial alveolar adenomas and malignant ade-
nocarcinomas were also observed. Tumor response to those 
exposures was significantly higher at the high dose, and the 
response was greater than would be predicted from the tumor 
response observed at the low dose, possibly indicating that 
clearance of DEP from the lung at the higher dose was 
decreased, as compared with the low-dose clearance. In addi-
tion, DNA from rats exposed to the high dose also displayed 
high adduct levels, compared with control.13 As a result of 
those findings, the authors concluded that DE at high con-
centrations over a lifetime was a carcinogen.

Table 2. D iesel exhaust experiments.

Experiment Date started Number 
of 
animals

Strain, 
sex

Sample material Number 
of days 
till first 
tumor

Survivors 
at time 
of first 
tumor

Total 
tumors

Length of 
exposure, 
(Days)

VIII March 5, 1952 52 C57BL; 
40 F, 12 
M

Extract of particulate 
material obtained 
during warm-up

392 33 2 670

XII May 19, 1952 50 A, M Extract of particulate 
matter obtained 
during full load

471   8 4 700

XII (2) February 13, 
1953

25 A, F Extract of particulate 
material obtained 
during full load

400 20 17 891

Adapted from Kotin et al.4

Table 3.  Concentrations of key components of exposure atmospheres from pre–2007-compliant diesel enginesa compared with the Advanced 
Collaborative Emissions Study 2007-compliant engineb.

Component Units Control Low Medium High

  TDE NTDE TDE NTDE TDE NTDE TDE NTDE

DEP ug/m3 10 (10) 0.3 (0.2) 350 (70) 0.2 (0.2) 3470 (450) 0.9 (0.6) 7080 (810) 6.3 (4)

CO ppm 1 (1) 0.9 (0.9) 3 (1) 1.1 (0.5) 17 (7) 1.9 (0.5) 30 (13) 6.4 (2.6)

NO ppm 0 0.001 (0.002) 0.6 (0.3) 0.3 (0.2) 5.4 (1.5) 1.3 (0.4) 10.0 (2.6) 6.6 (2.4)

NO2 ppm 0 0.002 (0.004) 0.1 (0.1) 0.1 (0.01) 0.3 (0.2) 0.9 (0.05) 0.7 (0.5) 4.4 (0.3)

HC vapor ppm 3 (1) — 4 (1) — 9 (5) — 13 (8) —

CO2 % 0.2 (0.04) 0.1 (0.05) 0.2 (0.03) 0.2 (0.08) 0.4 (0.06) 0.2 (0.03) 0.7 (0.1) 0.5 (0.1)

Abbreviations: DEP, diesel exhaust particulate; HC, hydrocarbon; NTDE, new technology diesel engine; TDE, traditional diesel engine.
a�The mean (SE) of weekly mean values during 30 months of exposure.
Adapted from Mauderly et al.13

bThe mean (SD) concentrations for each analyte of all measurements throughout the ACES.
Adapted from McDonald et al7, HEI Research Report 184, Appendix 1, Table 3 (2015).
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Later, in 1997, Ichinose et  al investigated the effects of 
exposure to DEP on lung tumor development and the induc-
tion of the DNA adduct 8-oxodeoxyguanine (8-OHdG) in 
Institute of Cancer Research (ICR) mice. Diesel exhaust par-
ticulate (dose: 0.05, 0.1, 0.2 mg/mouse) suspended in phos-
phate buffer containing 0.05% Tween 80 was administered 
with an intratracheal cannula. After 10 weeks of DEP expo-
sure, a dose-dependent increase in 8-OHdG in lung tissue 
DNA was observed. The investigators also detected a 24% to 
31% increase in tumor formation after 12 months. Interestingly, 
inclusion of β-carotene produced a partial reduction in 
8-OHdG adduct formation, indicating a possible contribution 
by ROS to the DNA damage observed. This study indicated 
that in vivo DEP exposure in mice leads to an increase in 
8-OHdG DNA adduct formation, with a concomitant increase 
in lung tumor formation.14

Exposure to DE also has been associated with epigenetic 
changes that affect transcriptional pathways. Jiang et  al, in a 
double-blind, crossover study design, examined how acute 
exposure to DE changed genomic methylation patterns in cir-
culating human peripheral blood mononuclear cell (PBMC). 
Nonsmoking human volunteer subjects who were physician-
diagnosed with asthma for at least 1 year or those who had 
undergone methacholine challenge with a resulting provoca-
tion concentration decrease in 20% (PC20) of ≤8 mg/mL meth-
acholine, served as both control and treated subjects. The 
investigators detected changes in methylation patterns in 
PBMC. The changes were mainly associated with genes involv-
ing the protein kinase and nuclear factor κβ pathways. These 
pathways are associated with oxidative damage responses. In 
addition, gene polymorphisms along with changes in methyla-
tion patterns influence gene functionality as observed in this 
study with glutathione S-transferase, protein-1 (GSTP1). The 
GSTP1 showed an increase in methylation; however, only 
individuals with the A > G polymorphism showed a marked 
change with exposure, whereas subjects with the G allele (lower 
functional activity) did not. This study provided evidence that 
human exposure to DE induced epigenetic changes in meth-
ylation patterns in genes that were induced in response to the 
presence of ROS.15

In summary, in vitro and in vivo studies, such as those out-
lined above, indicated that DNA damage was associated with 
DE/DEP exposure. Those studies contributed to the develop-
ment of diesel emission controls and the eventual development 
of the NTDE that were considered necessary to protect the 
public against the deleterious effects of DEP being dispersed 
into the atmosphere by diesel engines.16–25

The 2007-Compliant Engine: ACES
Overall study rationale and framework

As indicated above, in 2001, because of DE-related health con-
cerns, the EPA and CARB issued new diesel fuel and emission 
standards. A tiered adoption of these standards began with the 

manufacture of 2007-compliant diesel engines targeting par-
ticulate matter (PM) emission reduction by 2007, and reduc-
tions in NOx, due by 2010. To meet these rigid standards, 
industry redesigned the emission exhaust controls and fuel for-
mulations, resulting in considerably reduced emissions.26 A 
cooperative multiparty effort was conceived in 2005, with the 
Health Effects Institute and the Coordinating Research 
Council developing the ACES. This study was conducted in 3 
phases:

•• Phase 1. Emissions from 4 heavy-duty diesel engines 
were characterized. These engines were equipped with 
emission control systems meeting the 2007 PM stand-
ards, and characterization was conducted by Southwest 
Research Institute, in Houston, Texas.27

•• Phase 2. In this phase, testing was performed on another 
set of diesel engines meeting the 2010 emission stand-
ards to reduce NOx emissions.28

•• Phase 3. Lovelace Respiratory Research Institute (LRRI) 
was selected to perform the rodent exposure studies 
using 2 diesel engines selected from phase 1.

The study focused on the induction of oxidative stress as a 
result of DE emission exposure, with specific emphasis on 
damage of DNA, proteins, and lipids. Thus, the experiments 
were designed to answer the following questions:

1.	 Does DE from 2007-compliant diesel engine damage 
DNA in an exposure-dependent manner?

2.	 Does DE from 2007-compliant diesel engine damage 
the hippocampus through lipid peroxidation?

Methods

DE exposures.  Exposures to DE were conducted at LRRI in 
Albuquerque, New Mexico. In total, 2 of 4 engines from phase 
1 were randomly selected by the ACES oversight committee 
for the phase 3 health studies and designated as engine “B” and 
“B′.” These engines would be switched out periodically for 
maintenance, similar to what would occur under real-world 
conditions. These engines were fitted with 2007-required tech-
nologies, including a diesel oxidative catalyst, diesel particulate 
filter (DPF), and active regeneration system with exhaust fuel 
injection (all active regeneration was triggered by the engine 
control module and a water-cooled high-pressure loop exhaust 
gas recirculation system).27 The analysis of the DE indicated 
the following: (1) the average particle mass across the study was 
<12 µg/m3 (Table 3), with most of the mass coming off during 
DPF regeneration, (2) this mass exchange occurred once or 
twice per 16-hour duty cycle of engine operation, and (3) the 
particle size range was between 15 and 20 nm.29

Exhaust dilutions.  The animal bioassay doses were DE dilu-
tions described as low, medium, high, and control. These 
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dilutions of DE were based on predetermined nitrogen dioxide 
(NO2) concentrations, rather than particulate concentrations, 
because PM concentrations in the exhaust were typically 
beneath reliable detectability levels, although particulates were 
continuously monitored per protocol. NO2 exposure has been 
linked with noncancer effects seen in emissions from pre–
2007-compliant diesel engine and has been found to have the 
highest concentration in NTDE emissions.13,30 Thus, for these 
studies, NO2 levels were selected as 4.2 ppm (high), 0.8 ppm 
(medium), and 0.1 ppm (low), based on the following criteria. 
The highest concentration of NO2 (4.2 ppm) served as the max-
imum tolerated dose and was selected based on a chronic study 
of exposure to NO2 at 9.5 ppm, for 7 h/d more than 6 months, 
corresponding to ACES 4.15 ppm for 16 h/d exposure.30,31 The 
low-exposure level (0.1 ppm) represented a potential no-
observed-adverse-effect level approaching the national air qual-
ity standard for NO2 (0.053 ppm). The medium-concentration 
level was a concentration between the low and high levels, based 
on previous studies performed at LRRI.

Selection of the rat strain.  Two strains of rats were originally 
considered for this study: the F344 and the Wistar WU. Both 
of these strains had been previously used in chronic studies and 
in studies of DE (F344 in the United States and Wistar WU in 
Europe). At the time the ACES oversight committee deliber-
ated the advantages of each strain, the National Toxicology 
Program (NTP) was considering the Wistar Han strain in lieu 
of the F344 strain in chronic bioassays32 due to the following 
criteria: (1) longevity, (2) use in chronic inhalation studies 
(including studies of DE), (3) availability of an historical data-
base of cancer incidence, and (4) the maximum body weight 
reached by males. The NTP decision and the previously men-
tioned factors persuaded the oversight committee to recom-
mend the Wistar Han strain for the ACES. Accordingly, 
samples from a total of 160 rats (80 males, 80 females) were 
used in these studies.

Comet assay.  An alkaline-modified comet assay was used to 
measure DNA strand breaks in lung tissue, as a consequence of 
oxidative damage. During analysis of comet images, the presence 
of pyknotic cells was noted, indicating cells that are undergoing 
nuclear condensation as part of the necrotic and apoptotic pro-
cess. Comet slides were scored blindly, by at least 2 individual 
slide readers. Both pyknotic and nonpyknotic cells were initially 
analyzed, as part of the comet assays performed, but after com-
paring analysis results with and without pyknotic and finding no 
difference, in further analysis, pyknotic cells were excluded.

Samples from the 1-, 3-, 12-, and 24-month time points 
were prepared for analysis; however, 9 rat samples demonstrat-
ing pyknotic cells were removed from further analysis. Analysis 
of the following comet parameters was conducted: (1) tail 
length (TL; comet head diameter − comet length), (2) tail 
moment (TM; TL × %DNA in the tail), (3) olive moment 
(OM; tail centroid − head centroid × %DNA in the tail), and (4) 

%DNA in the tail. All TM values were expressed as percent-
ages of respective male or female control values at each time of 
DE exposure.

8-Hydroxydeoxyguanine assay.  As a surrogate measurement of 
DNA damage, the presence of 8-OHdG fragments, the result 
of excision of adducted guanine nucleotides during DNA 
repair, was measured in the serum. These fragments are consid-
ered an acceptable measure of DNA damage.33–35

Thiobarbituric acid reactive substances assay.  Previous studies 
suggested that DE particles may be able to bypass the blood-
brain barrier by impairment of the nasal-respiratory and olfac-
tory barriers.36,37 Particles entering the brain in this fashion 
could result in peroxidation reactions, from ROS generation by 
particulates, within the brain lipids. To investigate this possibil-
ity within our study, the thiobarbituric acid reactive substances 
(TBARS) assay was used to detect the presence of TBARS 
formed as a result of lipid peroxidation in the hippocampus.

Statistics.  Descriptive statistical analyses were performed on all 
groups and assays, with tests for normality of the tested data. If 
the data were not normally distributed, then equivalent non-
parametric tests were performed. Comparisons were made to 
test for sex differences; if no sex differences were noted, then 
male and female cohorts were combined for further analysis. In 
addition to sex differences, data were analyzed for both differ-
ences between DE exposure groups (low, mid, and high) and 
DE exposure duration. Data are reported as the mean ± SEM. 
General linear models were used (analysis of variance) to ana-
lyze the data, and when the analysis was found to be significant 
(P < .05), discrete post hoc comparisons between DE groups 
were performed using Bonferroni correction, to control for 
multiple comparisons.

Results
DNA damage assessment

Comet assay 1- and 3-month exposures.  No significant differ-
ences were observed after 1 month of DE exposure between 
any concentration tested (treated vs control, male vs female, all 
P > .05 (Figure 1A). A similar lack of statistically significant 
differences was observed with measures of comet TL (Figure 
2A) and percentage of DNA in the tail (Figure 3, Table 4).

Likewise, no significant differences were noted 3 months 
postexposure in TM (Figure 1B), TL (Figure 2B), and 
%DNA in the tail (Figure 3, Table 4), in comparing controls 
versus DE-treated animals and within the male versus female 
comparison. Pyknotic cells were observed in the 1-month 
group (1 control, 3 high-concentration samples) and the 
3-month group (1 low-concentration, 3 medium-concentra-
tion, and 1 high-concentration samples), no correlations 
were observed with respect to exposure group, sex, exposure 
duration, or batch processing (Table 4).
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Comet assay 12- and 24-month exposure results.  In the 12- 
and 24-month groups, no sex differences were observed 
(P > .05 for TM [Figure 1C and D], TL [Figure 2C and 
D], %DNA in tail [Figure 3A and B], and OM [Figure 4A 

and B]). Overall, no interaction between time and sex fac-
tors was noted to affect DNA damage, in neither the 12- 
nor 24-month groups. Because sex differences were absent 
in all tests up to this point, sexes were merged for all 

Figure 1.  Tail moment data from modified comet assay in rat lung tissue. No significant differences were found for (A) the 1-month exposure group 

(P > .05 for exposure level and for sex), (B) the 3-month exposure group (P > .05 for exposure level and for sex), (C) the 12-month exposure group (P > .05 

for exposure level and for sex), and (D) the 24-month exposure group (P > .05 for exposure level and for sex) (please note differences in y-axis scales). 

Data shown are the mean tail moment ± SEM, N = 4 to 5 animals/bar. For male and female groups at each DE exposure time, data were normalized using 

control group tail moment averaged in panels (A) at 1 month: 15 ± 7 and 26 ± 8 pixels, (B) at 3 months: 28 ± 9 and 33 ± 9 pixels, (C) at 12 months 0.4 ± 0.1, and 

0.4 ± 0.1, (D) at 24 months 0.6 ± 0.4 and 0.1 ± 0.04, respectively. DE exposure levels were based on NO2 levels where low = 0.1 ppm, mid = 0.8 ppm, and 

high = 4.2 ppm. DE indicates diesel exhaust.

Figure 2.  Tail length data from modified comet assay in rat lung tissue. (A) For the 1-month exposure group, a significant difference was found between 

the low-exposure level and high-exposure level (P = .04). (B) For the 3-month exposure group, P > .05. (C) For the 12-month exposure group, P > .05. (D) 

For the 24-month exposure group, P > .05 (please note differences in y-axis scales). Data shown are the mean tail length ± SEM; P > .05, number of 

animals, data normalization, and DE exposure levels are as described in Figure 1. DE indicates diesel exhaust.
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subsequent statistical testing of remaining variables, as 
described below.

DNA damage: 8-OHdG enzyme-linked immunosorbent assay 
in serum.  Comparison of control and treated, as well as 
between sexes in 1- and 3-month groups, showed no signifi-
cant differences (P > .05, Figure 5) in 8-OHdG. The 
3-month group exposure measurements were significantly 
higher than those for other exposure-duration groups 
(P < .001). Analysis of serum 8-OHdG in serum was signifi-
cant within the mid-concentration and high-concentration 
groups (12-month group) and within the high-concentra-
tion group in the 24-month group (P < .05). Sex difference 
was observed in the high-concentration group (P < .05). 
There was no concentration-dependent relationship to these 

differences, and other interactions were likewise, negative 
(P > .05, Figure 5).

Oxidation/reduction assessment (via TBARS)

Lipid peroxidation assay in the hippocampus.  In the 1-month 
group, sex differences were noted in both the low-dose and high-
dose exposures (P < .05), for measurements of lipid peroxidation. 
In the 3-month group, there was a statistically significant differ-
ence between control and the low-dose group (P < .05). However, 
no dose-dependent pattern was observed (Figure 6A and B). 
Analysis of the 12- and 24-month groups was nonsignificant for 
exposure effects (Figure 6C and D, P > .05). Overall TBARS lev-
els in the 24-month group were significantly higher than the 
other duration groups (P < .05), and the overall TBARS level in 

Figure 3.  %DNA tail data from modified comet assay in rat lung tissue. (A) For 12-month exposure group. (B) For 24-month-exposure group. Data shown are 

the mean %DNA ± SEM; P > .05, number of animals, data normalization, and DE exposure levels are as described in Figure 1. DE indicates diesel exhaust.

Table 4.  Analysis of the effects of pyknotic cells on the percentage of DNA in comet tail of rats exposed for 3 monthsa.

Samples with pyknotic cells Samples without pyknotic cells

  Male Female Male Female

Control 41.4 7.6a 46.8 4.1a 41.4 7.6a 46.8 4.1a

Low 45.5 6.6 41.7 10.3 45.5 6.6 50.8 6.2

Mid 41.7 10.8 27.0 11.5 52.0 4.4 44.8 6.8

High 34.5 8.5 50.1 9.8 34.5 8.5 59.4 4.1

aData are mean ± SEM.

Figure 4. O live moment data from modified comet assay in rat lung tissue. (A) For 12-month exposure group. (B) For 24-month exposure group. Data 

shown are the mean olive moment ± SEM; P > .05, number of animals, data normalization and DE exposure levels are as described in Figure 1. DE 

indicates diesel exhaust.
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the 12-month group was also notably higher, in contrast to the 
1-month group (P < .05). We speculated that this observation was 
a result of a possible aging effect, as has been observed in other 
studies38; however, more experiments would be needed to dem-
onstrate this possibility with adequate statistical confidence.

Discussion
Genotoxic components of DE

It is important to reemphasize that the adverse health effects of 
air pollution are classically attributed to oxidative stress, in 

large part due to chemical reactions that are secondary to gas-
phase to wet-phase chemistry, resultant of effects of particulate 
exposure.39,40 However, DE health effects have also been linked 
to the induction of genotoxicity associated primarily with 
effects produced by DE’s particulate fraction.36,41,42 This is 
based on the idea that particulates or chemical adherents are 
able to directly damage tissues, lipids, proteins, or DNA 
through oxidative stress induction or indirectly through inflam-
matory responses, particularly the recruitment of inflammatory 

Figure 5.  8-OHdG assay data in rat serum. For (A) male-exposure 

group, (B) female-exposure group, and (C) all (male and female 

combined)-exposure group. In the 12-month group, exposure vs control 

in mid-dose and high-dose groups, P < .05, and between sexes at 

high-dose group, P < .05, no dose-dependent pattern was observed. 

There was a significant increase over time in both male and female 

samples when comparing 1- versus 3-month groups (P < .05). Data shown 

are the mean 8-OHdG concentration ± SEM, number of animals, data 

normalization, and DE exposure levels are as described in Figure 1. 

*P < .05, showing statistical significance. 8-OHdG indicates 8-hydroxy-2′-
deoxyguanosine; DE, diesel exhaust.

Figure 6.  TBARS assay data in rat hippocampal tissue. For (A) 

male-exposure group, (B) female-exposure group, and (C) all-exposure 

group. In the 1-month group, a significant difference was noted between 

sexes in the low-dose and high-dose groups (P < .05), and in the 3-month 

group, there was a significant difference from control in the low-dose 

group (P < .05). No dose-dependent pattern was observed. Analysis of 

the 12- and 24-month groups was nonsignificant (P > .05). There was a 

significant increase over time in both male and female samples when 

comparing 1-month versus 12- and 24-month groups (P < .05). Data 

shown are the mean TBARS concentration ± SEM, number of animals, 

data normalization, and DE exposure levels are as described in Figure 1. 

*P < .05, showing statistical significance. DE indicates diesel exhaust; 

TBARS, thiobarbituric acid reactive substances.
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cells, which, in turn, produce oxidative mediators. Diesel 
exhaust particulates, both fine and ultrafine particles (UFPs), 
are deposited deep in the lungs and, in the case of UFP, capable 
of entering the blood stream and tissues, themselves. Hundreds 
of chemicals including poly-aromatic hydrocarbons (PAH), 
which are a significant contributor to vehicular PM health 
effects, also are adsorbed onto DEPs.40,43 For these reasons, 
understanding the effects of particulates and their adherents 
and the study of the effects of potential particulate mitigation 
by the 2007-diesel engine modifications are of importance and 
should be considered.

The studies by both Lee et  al44 and Harri et  al45 found 
increases in 8-OHdG in the urine of DE emission inspectors 
and workers exposed to PAHs. The studies by Rodriquez-
Romero, Lee, and Harri all implicate the PAHs in producing 
genetic damage. It could be argued that by decreasing particu-
late levels, there would be a concomitant decrease in the mani-
festation of PAH damage. It is possible that results of the 
ACES showing the benefits of reduced emission levels could 
have been due to reductions in PAH, associated with the 
NTDE mitigation mechanisms.

In the studies outlined above, we investigated NTDE emis-
sions and their effects on DNA damage and oxidation of lipids. 
Our original hypothesis suggested that oxidative stress was the 
main mechanism of damage. We postulated that the oxidative 
mediators promoting stress and subsequent damage originated 
from DE gases and/or DEP. As the characterization of the 
NTDE proceeded, it was determined that due to the addition 
of new after-treatment technology, DEPs were near or similar 
to ambient levels, potentially reducing the health risk from this 
component of DE, within the particulate size range that was 
mitigated. However, there would remain some concern that 
there were other gaseous components still present, such as 
NOx and PAHs, which also might have produced oxidative 
mediators or inflammatory responses within our study.

Genotoxicity of DE in rats and humans

The comet assay is an appropriate test for DNA damage 
because it examines the effects on DNA on a broad range of 
oxidized purines and pyrimidines.46 For example, use of the 
comet assay illustrated that DNA double-strand break levels 
were greater in a study of DE-exposed bus drivers and garage 
workers compared with control, in the city of Prague, in the 
Czech Respublic.47 Similarly, a Danish study found a correla-
tion between UFP (measured at fixed stations) and increased 
probability of DNA damage in individuals who bicycled in 
traffic.42 Furthermore, in a study by Muller et al,48 after oral 
ingestion of DEP, elevated levels of strand breaks in the lungs 
of Big Blue rats were likewise reported, using the comet assay. 
Thus, we believe that the comet assay was appropriately applied 
in our search for DNA damage, within our studies.

Interestingly, our investigation did not find significant expo-
sure-related, dose-dependent elevation in DNA damage, in 

exposed animals, compared with controls (comet assay, 8-OHdG 
assay). We noted that control background levels in the 1- and 
3-month groups, and in the 12- and 24-month groups, were dif-
ferent, suggesting that the differences between those study 
groups have some age-related explanation. However, we were 
unable to locate any study, either in support or refutation, of this 
suggestion of age-related differences in our rodent lungs.

Environmentally induced lipid peroxidation in 
brain tissue

Acute, subchronic, and chronic exposures to PM and pollutant 
gases can cause detrimental effects in people.49 Furthermore, 
respiratory-tract inflammation can produce mediators such as 
inflammatory cytokines, such as interleukin (IL)-6, tumor 
necrosis factor α (TNF-α), and C-reactive protein, in addition 
to ROS.50–54 Furthermore, a combination of systemic PM circu-
lation and damaged nasal and olfactory barriers has been 
reported to have detrimental health effects in the brains of 
DE-exposed populations.37 Several studies support this possi-
bility, including studies by Calderón-Garcidueñas et al,37,52,55–57 
which dealt with the effects of Mexico City’s air pollution. The 
investigators observed that in otherwise health dogs exposed to 
Mexico City’s air pollution demonstrated increased levels of 
DNA damage in nasal, respiratory, and olfactory epithelium. 
Furthermore, they detected chronic brain inflammation and 
neurodegeneration in these dogs providing evidence that dete-
rioration of the olfactory barrier might play an important role in 
the observed neuropathology.55 In addition, Calderón-
Garcidueñas et al57 also found that the frontal cortex of the hip-
pocampus in human brain tissue of individuals exposed to the 
same Mexico City air pollution expressed considerably greater 
COX-2 levels56 implying an association between air pollution 
and inflammation. Moreover, they also reported endothelial 
hyperplasia in the olfactory bulb and observed UFPs in olfac-
tory endothelial cytoplasm and basement membranes.57 Finally, 
Gerlofs-Nijland et al58 found that in rats exposed to DE, base-
line concentrations of pro-inflammatory cytokines, TNF-α, 
and IL-1α were brain region dependent and differed in expres-
sion, with increases pronounced within the striatum.

Hence, the prior studies mentioned above provide evidence 
that the brain can be affected by air pollutant exposure and the 
response may vary by brain region. Observations from our 
study of the health effects on the rat hippocampus treated with 
NTDE emissions mainly showed no significant effects. 
However, in the 1-month group, we did observe that males in 
the low-concentration and high-concentration categories 
trended toward an effect of DE exposure, which was not statis-
tically significant (P = .06).

Study limitations

Additional control groups.  A potential limitation of the ACES 
was a lack of a pre–2007-compliant diesel engine emission 
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control within the experimental design. Concurrent testing of 
pre–2007-compliant diesel engine samples, along with 
2007-compliant diesel engine samples, could have added 
strength to our study. However, this was not included within 
the experimental design based on the earlier studies of DE 
exhaust by Mauderly and colleagues,30,59,60 in which the use of 
NO2 levels was considered a good surrogate of DE exposure, 
allowing comparisons between the studies, and allowing some 
inferences to be made from the data collected.

Effects of particulates and NOx.  Although the 2007-compliant 
diesel engine significantly reduced emissions, including par-
ticulates, some small particulate and gaseous (eg, NOx) agents 
were present in the exhaust of 2007-compliant diesel engines. 
It is possible that those remaining particles and gases directly 
or indirectly induced some oxidative damage and inflammatory 
responses. The end points of the ACES suggested a minimal 
amount of oxidative damage, inclusive of remaining particu-
lates and gaseous components, as mentioned above, and pro-
vided support for the concept of reduced health risk from the 
cleaner running 2007-compliant diesel engine.26,61,62

NO2 levels as an experimental determinant.  It could possibly be 
argued that the ACES did not truly assess the effects of DEP, 
in that the NO2 surrogate levels used to monitor exposure 
atmosphere concentration were without regard to actual par-
ticulate concentration. However, particulates continued to be 
monitored in these studies, as reported by McDonald et al. The 
daily average Dekati particle mass measured inside the cham-
ber ranged from 0.4 µg/m3 (controls) to 12.3 µg/m3 (high dose) 
for all collected data over the entire exposure duration, as com-
pared with those of the 1987 study by Mauderly et al, which 
ranged from 10 µg/m3 (control) to 7080 µg/m3 (high dose)13,26,62 
(Table 3). Thus, we cannot directly argue that there are no 
effects from PM from 2007-compliant diesel engines in our 
study, but we can infer from our findings that the hazard asso-
ciated with diesel emissions is likely lower than pre–2007-com-
pliant diesel engines. Furthermore, it can also be argued that 
the effects of NO2 exposure, in the range of our study (0.1-
4.2 ppm), also showed little to no measurable changes in our 
end points. Thus, although a limited number of observations 
displayed some randomly distributed significant differences 
from the standpoint of DE, we believe that it is unlikely that 
they are of biological importance, in consideration of the over-
all effects.

Tissue harvest timing.  The length of time from end of DE 
exposure to the harvest of tissue could be a factor, perhaps 
explaining the lack of significant effects in our findings. An 
important question was related to the speed and extent of 
DNA repair, in that there may have been a possibility that 
DNA repair processes over the time we studied could reduce 
the measured DNA damage. Table 5 illustrates the harvest 
duration from end of exposure to harvest completion. This 

ranged from 2.5 (females) to 3.75 hours (males) in the 1-month 
group and 4.2 hours (females, 1 female harvested earlier than 
the rest) to 3.4 hours (males) for the 3-month group, which was 
consistent, and a relatively narrow window, with an average of 
approximately 3 hours after DE exposure. It is likely that some 
DNA repair mechanisms were active during that time, result-
ing in some loss of magnitude of detectable DNA damage–
associated changes. However, we point out that (1) as oxidatively 
damaged DNA was repaired, some of that repair would have 
released 8-OHdG lesions which should accumulate in serum, 
but no increase in serum 8-OHdG was observed in our study 
and (2) DNA damage, repaired in an efficient, error-free fash-
ion in less than 4 hours, would return cells to their original con-
dition and consequently would be biologically immaterial.

Potential for nonoxidative DNA damage.  In our study, we con-
centrated on measuring oxidative DNA damage as DNA 
strand breaks, 8-OHdG adducts, presence of excision repair 
products, and lipid peroxidation. The possibility still exists that 
other types of DNA damage may have occurred that could not 
be measured by our assays. For example, DNA-DNA or DNA-
protein cross-linking by alkylating agents in DE and formation 
of bulky adducts by PAHs, micronuclei formation, and sister 
chromatid exchange.62 As stated above, if the DNA damage 
caused by any of these possibilities is correctly repaired, they 
become biologically immaterial. However, if this DNA damage 
remains unrepaired, then persistent DNA damage could pose a 
continuing hazard, allowing for possible DNA damage fixation 
and production of mutations.63–65 Potentially, sufficient and 
persistent DNA damage may develop into a DNA instability 
cellular phenotype resulting in continued adverse health conse-
quences.6,66–68 Furthermore, the potential for those effects 
assumes that the complexity of human DNA repair processes 
are sufficiently modeled by rodents. Although this assumption 
may be important, it is not different from other studies in 
which rodents are used as models of investigation of those 
effects. However, ours were not the only biomarkers measured 
in the ACES; the agreement of the other various and different 
biomarkers measured within the main ACES, and those of 
other auxiliary study investigators, would seem to provide sup-
port for our conclusions regarding reduced effects associated 
with emissions of 2007-compliant diesel engines.69–72

Table 5.  Comparison of harvest duration between males and females 
in the 1- and 3-month exposure groups from Advanced Collaborative 
Emissions Study.

Average harvest duration, h

  Males Females

1 month 3.75 2.50

3 months 3.40 4.20a

aLonger than the averages for the other groups because 1 female was 
processed earlier in the day than the rest.
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Possible exposure adaptation effects.  The ACES modeled the 
DE exposure in a chronic and continuous manner. It is possible 
that the animals may have adapted to the DE exposure, miti-
gating the effects of DE early in the experiment, possibly 
through upregulation of antioxidant capacity and/or DNA 
repair. If so, such adaptations may have been sufficiently pro-
tective, reducing DNA damage to equivalent levels as that 
found in control animals. This possibility would be suggestive 
that (1) the level of DEP exposure produced by 2007-compli-
ant engines, which approaches that of ambient air, may be so 
low that there may be only a small stimulus for a stress response 
and subsequent DNA damage and/or repair or (2) the levels of 
DEP exposure were easily handled by oxidative stress mitiga-
tion and DNA repair mechanisms, resulting in no measurable 
stress and damage responses.

Conclusions
Based on our portion of the ACES, we concluded that emis-
sions from 2007-compliant diesel engines resulted in a lack of 
measurable DNA damage as measured in lung tissue, serum, 
and the hippocampus. Other components of the ACES reported 
a similar lack of measurable effects. For example, Bemis et al70 
found that exposure to DE in rats for 24 months did not increase 
the frequency of micronuclei in reticulocytes. Conklin and 
Kong’s investigation likewise indicated that neither there was 
little change, in more than 20 cardiovascular biomarkers from 
plasma, nor were there exposure-related changes in cardiac 
fibrosis and aortic remodeling.72 Thus, within the limitations of 
our measured end points, and those of others within the ACES 
group, the findings support that measurable ROS-associated 
tissue derangements and other pathologies typically associated 
with 2007-compliant diesel engines were mainly absent, as 
compared with other studies of pre-2007 diesel engines. We 
have inferred that 2007-compliant diesel engine emission con-
trol systems and reformulated fuels can be effective and can 
potentially reduce the health effect hazards posed by DE expo-
sure. In addition, with the subsequent implementation of the 
2010 emission standards for NOx, one would expect that the 
NOx levels should also decrease, further reducing health risk 
from DE exhaust exposure. With these considerations, it would 
be reasonable to expect that replacement, or retrofit, of the cur-
rent aging diesel fleet should improve future air quality, as 
affected by diesel engine emissions.
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