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The distribution of avian herbivores is to a large extent
influenced by food availability (Prins & Ydenberg 1985,
Fryxell 1991). Animals spend more time in patches that
enable them to have a higher intake of energy (de Boer
& Prins 1989, Prins 1996, Raoguet et al. 1998) or nutri-
ents (Ydenberg & Prins 1981, Durant et al. 2004, Bos et
al. 2005). Small herbivores require a higher nutrient
concentration in their diets than large herbivores, as
they are less capable of utilizing poor quality plants
(Prins & Ydenberg 1985, Durant et al. 2004, Prins &
van Langevelde 2008). For instance, the Barnacle
Goose Branta leucopsis requires food containing more

than 15% crude protein to meet nitrogen requirements
(Prop & Deerenberg 1991, Amano et al. 2004). Further-
more, waterfowl have food retention times as short as a
few hours (Prop & Vulink 1992, McKay et al. 1994),
which is reflected by a high throughput and defecation
rate (Owen 1980). Such a digestive system requires a
high ingestion rate and only allows for easily digestible
components (Karasov 1990). To achieve this, avian
herbivores select feeding sites of intermediate biomass,
trading-off forage quality and quantity (Durant et al.
2004, Heuermann 2007). Foraging performance by
herbivorous waterfowl has been well explored under
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experimental conditions, in particular to understand
decisions that take place at a small scale (Riddington
et al. 1997, Hassall et al. 2001, Bos et al. 2004). How-
ever, processes that take place at the habitat scale have
been investigated less often. This scaling-up could
reveal important insights into the factors that deter-
mine grazing pressure by geese (Vickery & Gill 1999).

Populations of herbivorous waterfowl in the west-
ern Palaearctic have increased strongly over the last
decades due to changes in land use and hunting
regimes (Madsen et al. 1999). Conflict with agriculture
has intensified because herbivorous waterfowl feed to a
large extent on agricultural land (van Eerden et al.
2005). The establishment of a refuge system to accom-
modate these birds is regarded to be an effective, long-
term solution to the problem (Owen 1977, 1980,
McKay et al. 2001). In Europe, the highest densities of
herbivorous waterfowl are found in The Netherlands,
where the heavily fertilized agricultural lands provide
attractive foraging areas (Prins & Ydenberg 1985,
Madsen & Fox 1995, van Eerden et al. 2005). To alle-
viate problems, accommodation areas have been
designated as refuges (Leistra et al. 2008), in addition
to existing refuge areas (in semi-natural areas including
salt marshes, fresh-water marshes, and some extensive-
ly managed grasslands). Refuges are generally located
close to larger water bodies, as waterfowl are known to
prefer foraging close to their roosts, to save travelling
time and energy (Owen 1980, Owen et al. 1987,
Vickery & Gill 1999). However, this distance effect may
vary in time and among geographical areas. Waterfowl
are also sensitive to human disturbance (Owen 1980,
Hockin et al. 1992, Vickery & Gill 1999). It is therefore
assumed that disturbance could stimulate birds to
forage in designated refuges. Within these refuges, the
influence of food resources and distance to roosts are
expected to be more pronounced than in the surround-
ing non-refuge areas, where disturbance plays an
important role. 

This study aims to investigate how food resources,
distance to roosts, and the location of refuges influence
the distribution of Barnacle Geese during spring stag-
ing. Our results have implications for conservation and
can be used to further improve wildfowl refuge
management.

METHODS

Study area
Our study area was situated in the northern part of
The Netherlands, in the provinces of Groningen and

Friesland (Fig. 1). Field sampling of forage quality and
quantity was carried out in the Lauwersmeer area (70%
agricultural grasslands, 30% semi-natural grasslands).
Agricultural lands are managed by farmers, with regu-
lar fertilization, mowing, and cattle grazing. Semi-
natural areas are managed by different organizations as
nature reserves, some of which allow year-round graz-
ing by cattle. In accommodation areas, wildfowl were
not allowed to be disturbed from 1 November to
1 April, while in nature reserves waterfowl are fully
protected. A variety of scaring methods have been
developed for non-refuge areas (e.g. gas canons, scare-
crows, dog chasing). However, if chasing the geese does
not result in reduced damage to agriculture, killing by
shooting is permitted (killing Barnacle Geese is not
allowed in this region). The plant community in agricul-
tural fields is dominated by Lolium perenne and Poa
pratensis. Low and middle height plant species (forage
for herbivorous waterfowl) in semi-natural areas
include Festuca rubra, Puccinellia maritima, Agrostis
stolonifera, Plantago maritima, and Triglochin maritima.

Satellite tracking data of Barnacle Geese
In January 2008, eight adult Barnacle Geese were
caught in the Lauwersmeer area and fitted with 30-g
solar-powered GPS PTT transmitters (PTT 100 series,
accuracy ±18m Microwave Telemetry, Inc., Columbia,
MD, USA). The transmitters were fastened by Cordura-
Nylon harness (for details see Ens et al. 2008). The
transmitters recorded GPS locations four times per day
(at 7:00, 10:00, 13:00, and 16:00 CET), and the collect-
ed data, including goose ID, date, time, longitude, lati-
tude, speed, course and altitude, were transmitted every
three days (for details see Ens et al. 2008). A total of
1468 GPS locations were recorded in the provinces of
Friesland and Groningen from 1 February to 18 May in
2008, after which the tracked geese had left The
Netherlands (Fig. 1). The temporal distribution of the
recorded GPS locations is displayed in blocks of three
days in Figure 2, indicating the continuity of records.

Previous studies indicate that geese forage during
70% of the daylight period in the spring (Prins et al.
1980, Black et al. 1991, van der Graaf 2006). We there-
fore assumed that from March to April, locations
recorded were grazing locations. In order to exclude
locations recorded during flight, GPS locations associat-
ed with a speed of more than 1 km/h were not used.
GPS locations corresponding to the time of field
sampling (March and April 2008), were imported into
the ArcGIS software (www.esri.com) as point data (n =
1025). This point data layer depicted bird grazing at
specific locations. To quantify the spatial distribution of
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birds, a grazing intensity map (the number of recorded
GPS locations of Barnacle Geese per km2) was generat-
ed, using a fixed kernel density estimator with 95%
space-use contours. This is a commonly applied space-
use estimator in wildlife studies and has been used to
estimate resource selection (Marzluff et al. 2004,
Millspaugh et al. 2006). By overlaying the vegetation
sample data on the generated density map, the grazing
intensity for each vegetation sample was extracted.
Vegetation samples located outside the 95% space-use
contours were excluded from analysis, as grazing densi-
ty data was not available in these areas. A total of 55
samples were retained for further analysis. 

Field data collection
Fieldwork was conducted from 20 March to 13 April in
2008. We focused on spring because Barnacle Geese in
winter mainly graze on heavily fertilized agricultural
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Figure 1. Spatial distribution of recorded GPS locations of eight Barnacle Geese in the provinces of Friesland and Groningen, The
Netherlands. The records stem from 1 February to 18 May 2008, after which the geese migrated towards Russia. The locations of
semi-natural areas were extracted from the Dutch National Landuse Database.  
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Figure 2. Temporal distribution of the recorded GPS locations of
eight Barnacle Geese in the provinces of Friesland and
Groningen, 1 February to 18 May 2008. The bars indicate the
number of locations received every three days.  
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land (Prins & Ydenberg 1985, van der Graaf 2006),
whereas both agricultural and semi-natural areas are
utilized during spring (Bos & Stahl 2003). The foraging
areas of Barnacle Geese are up to 7.5 km from their
roost sites (Owen et al. 1987, Vickery & Gill 1999).
Therefore, for geese roosting on the Lauwersmeer lake,
a 7.5 km buffer was generated from the lake sides to
define the maximum extent of the potential feeding
area. Non-refuge areas were defined as those areas situ-
ated within the perimeter of the 7.5 km buffer, but
outside of accommodation areas, semi-natural areas
and the Lauwersmeer lake (Fig. 3).

A stratified sampling design was adopted, based on
two strata: refuges and non-refuges. The refuge areas
were more intensively sampled than the non-refuges,
because geese were mostly observed in refuges during
the field survey. In total, 20 random locations were
generated, with 15 located in refuges and 5 in non-
refuges (Fig. 3). For each location, 5 random sample
plots were generated within a square (300 × 300 m),
resulting in 75 samples in refuges, and 25 samples in
non-refuges. Additionally, the samples covered both
agricultural (75) and semi-natural grasslands (25). We
assumed that the grass conditions were relatively stable
during the 3–4 week sampling period (either consis-
tently or little/not grazed by geese).

Three vegetation variables were measured: green
biomass, sward height and nitrogen concentration.
Green biomass and sward height were used as forage
quantity indicators, whereas nitrogen concentration

was used as a measure of forage quality. Samples were
taken from a plot of 1 × 1 m. Because of the homogene-
ity of the swards, we assumed that small sampling
areas (0.1 × 0.1 m) adequately represented the biomass
level of the bigger plots (1 × 1 m) (e.g. Owen 1971,
Harwood 1977). The sampling area was clipped to
ground level using hand shears and samples were
stored in sealed plastic bags. In the lab, non-green parts
were discarded and the remaining green portions were
dried at 70°C for 48 h and subsequently weighed.
Sward height was measured by pushing a ruler vertical-
ly through the sward until it came to rest on the soil
surface (Stewart et al. 2001). By placing a carton disc
on top of the vegetation, the sward height was read off
the ruler. Sward height was recorded as a mean of ten
random positions within each sample plot. Twenty leaf
samples per plot were collected for nitrogen analysis by
taking leaves between the forefinger and thumb, simu-
lating goose grazing. Nitrogen concentration (%) was
analyzed in the Resource Ecology Group laboratory of
Wageningen University, using a SkalarSan-Plus auto
analyzer, after destruction with a mixture of H2SO4,
selenium and salicylic acid (Novozamsky et al. 1983).

Statistical analysis
We first tested how the distance to the nearest roost
influenced grazing intensity. The number of recorded
GPS locations was calculated within 7 distance buffers
ranging from 1 to 7.5 km, with an increase of 1 km (the
outermost buffer was from 6 to 7.5 km). A distance
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Figure 3. Distribution of twenty sampling
locations in refuges and non-refuges in
the Lauwersmeer area. All field locations
were situated within a 7.5 km buffer from
the lake sides.  
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threshold was identified to distinguish areas with high
cumulative grazing intensity from low intensity, based
on the number of recorded GPS locations in each
distance buffer. Field samples were categorized into
two groups: within and beyond the distance threshold.
The difference in grazing intensity between these two
groups was tested using a one-way ANOVA, with graz-
ing intensity as a dependent variable and occurrence
within or beyond the distance threshold as a fixed
factor. Categorizing the field samples into two groups
could relax the influence of the distance to roost on the
grazing intensity of geese. The relationship between
food conditions and grazing intensity would therefore
be more pronounced in each subset than in the pooled
data.

Geese prefer sites of higher forage quality when
nitrogen is in limited supply, but do not distinguish
when overall forage quality is sufficiently high.
Previous studies found a positive relationship between
food quality and goose grazing intensity for nitrogen
concentration in green leaves below 2.4% (Prop &
Deerenberg 1991), but above 3.2% (National Research
Council 1994) no relationship was discovered. Mean-
while, geese prefer sites of intermediate forage quantity
as their foraging efficiency drops at high sward height
due to increased handling time (van de Koppel et al.
1996, van der Wal et al. 1998, Heuermann 2007). An
ordinary partial least square (OLS) regression was
fitted to test the effects of food resources and distance
to roosts on grazing intensity. The predictive variables
included nitrogen concentration, amount of green
biomass, squared green biomass, sward height, squared
sward height, and categorized distance to roosts. The
OLS model assumes either the observations are inde-
pendent or the residuals from the OLS estimation are
uncorrelated (Haining 1990). The existence of spatial
dependence will make the use of OLS regression ques-
tionable, as violation of these assumptions may result
in biased and inefficient estimation of the parameters
of the regression model. Therefore, a N×N spatial
weights matrix W was generated to identify neighbour-
ing fields for spatial diagnostics and spatial model esti-
mation. The diagonal elements are zero. The off-
diagonal elements, Wk,l, represent neighbour relations
between observations k and l. A common method for
choosing spatial weights is to use geographic criteria,
such as points being within a critical distance (Anselin
2006). We used 300 m as the threshold value, based on
the sampling scheme. We then executed Moran’s I
(Moran 1950) based on the spatial weights matrix to
measure the degree of spatial dependence of the OLS
model residuals. Moran’s I is powerful in detecting

misspecifications, but less helpful in suggesting alterna-
tive specifications. Two Lagrange Multiplier (LM) tests
were therefore used to identify which of the two
common spatial processes, spatial lag or spatial error, is
the cause. The LM Lag test evaluates if the lagged
dependent variable should be included in the model,
and the LM Error test assesses if the lagged residual
should be included. Robust versions of the statistics are
considered only when the standard versions are signifi-
cant. They can be conducted to verify if the spatial lag
dependence is robust and therefore spatial error
dependence can be ignored and vice versa.

Spatial dependence can be modelled by the spatial
lag model or the spatial error model. In the spatial lag
model, the value of a dependent variable Y at a location
is modelled as a function of the independent variables
X in that location as well as the values of the dependent
variable at the neighbouring locations, i.e. the spatial
lag. A spatial lag is the weighted average of the
dependent variable values at the neighbouring loca-
tions (Anselin 2006), included as an additional
explanatory variable in the model. The spatial error
model addresses the spatial autocorrelation existing in
the regression residuals of the OLS model. The value of
the dependent variable Y in a location is redefined as a
function of the independent variables X and the regres-
sion residuals of the neighbouring location, i.e. the
spatial error. A spatial error is a weighted average of
the individual residuals of the neighbouring locations,
which is added into the model as an additional
explanatory variable. The spatial lag model assumes
that grazing intensity depends on the intensity
observed in neighbouring fields and a set of environ-
mental factors. The spatial lag model is theoretically
consistent with the situation where grazing rate in one
field is jointly determined with that of the neighbour-
ing fields.

The Akaike Information Criterion (Akaike 1974) is
a model selection criterion based on the distance
between the estimates of the model and the true
values, which allows models of different types to be
compared directly. A smaller AIC value indicates better
goodness of fit and therefore the model with the least
AIC is regarded as the better model. AIC was used to
compare OLS and spatial autoregressive models. Since
the OLS models report goodness of fit using R2, where-
as the spatial autoregressive models use pseudo R2,
they are not directly comparable (Veall & Zimmermann
1996). The spatial dependence of the two model resid-
uals was also compared using Moran’s I scatterplots.

All recorded GPS locations (n = 1468) from 1
February to 18 May were utilized to compare the
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frequency of goose visits in refuges and non-refuges.
The numbers of locations recorded in refuges and non-
refuges were calculated for each month. Thereafter we
analysed data at the Lauwersmeer area in March and
April 2008 and compared the forage conditions in
refuges and non-refuges. All field data were tested for
normality using a Kolmogorov–Smirnov test. Percen-
tage data (nitrogen concentration) were arcsine-square
root transformed (Zar 1999). To test whether the
forage quality and quantity were different within and
outside the refuges, a one-way ANOVA was used, with
nitrogen concentration, green biomass and sward
height as dependent variables, respectively, and loca-
tion inside or outside refuges as a fixed factor. The
forage conditions within and outside of refuges could be
compared because the main plant species were similar
(2/3 of the samples in refuges and all samples in non-
refuges were collected from agricultural grassland).

RESULTS

Forage conditions and distance to roosts
The number of recorded GPS locations of Barnacle
Geese in different distance buffers revealed a high
cumulative grazing intensity in fields within 2 km from
the roost, accounting for 83% of the total recorded
locations (Fig. 4A). The field samples were therefore
categorized into two groups: within and beyond 2 km
from the nearest roost. A significantly higher grazing
intensity was observed at sample locations within 2 km
from the nearest roost than for locations beyond (Fig.
4B: F1,53 = 22.03, P < 0.001).

Following the basic fitting of the OLS model (Table
1), we estimated the value of Moran’s I for the fitted
model residuals. This is equivalent to testing the
assumption of the OLS model that the residuals from
the model fit are independent. The residuals of the

ARDEA 99(2), 2011222

Model OLS Spatial lag 

R-squared 0.487 0.737
Log-Likelihood –129.1 –114.4
AIC 272.3 244.9
No. of observations 55 55

Parameters Coefficient t-statistic P Coefficient t-statistic P

Sward height 4.537 3.21 0.002 4.331 4.58 <0.0005
Sward height2 –0.516 –2.67 0.010 –0.480 –3.72 <0.0005
Green biomass 0.094 1.99 0.052 0.051 1.59 0.111
Green biomass2 –0.001 –2.68 0.010 –0.001 –2.38 0.017
Nitrogen 0.135 0.37 0.716 –0.185 –0.75 0.455
Distance to roost –4.571 –5.25 <0.0005 –2.987 –4.56 <0.0005
Spatial lag variable 0.697 8.68 <0.0005

Table 1. Parameter estimates and statistics for the OLS and Spatial lag models for predicting goose grazing intensity from forage
quantity, quality, and roost distance.       
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Figure 4. Numbers of recorded GPS loca-
tions of eight Barnacle Geese in different
distance buffers (A) and the grazing
intensity in field samples located within
and beyond 2 km from the roost (B) in
the Lauwersmeer area March and April
2008.
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OLS model presented a significant level of positive
spatial autocorrelation, with a Moran’s I value of 0.419
(P < 0.001). The presence of spatial dependence in the
data violates the independence assumption of the OLS
regression and demands explicit treatment with a
spatial autoregressive model.

LM and LM Robust tests were performed in order to
select between the spatial lag and spatial error models
(Table 2). The LM Lag test and LM Error test both
suggested significant spatial dependence. We therefore
analysed the robust forms of the test. The Robust ML-
Lag was significant (P = 0.008) while the Robust ML-
Error was not (P = 0.575), indicating that the spatial
lag specification was more appropriate.

AIC values indicated a better fit for the spatial lag
model than the OLS model (Table 1). Grazing intensity
showed a quadratic relationship with sward height,
with most intense grazing at intermediate height.
Similar relationships were observed for green biomass,
though the first order effect was not significant. No
significant relationship was found between nitrogen
concentration and grazing intensity. Both distance to
roost and the spatial lag variables showed significant
effects. The Moran’s I of the residuals was reduced from
0.419 (OLS) to 0.071 (spatial lag model). 

Food conditions in refuges and non-refuges 
The eight tracked geese spent on average 80% of their
grazing time in refuges from February to May 2008 in
The Netherlands (Fig. 5A), and 94% within the 7.5 km
potential grazing buffer around the Lauwersmeer lake
(Fig. 5B). The percentage of recorded GPS locations in
refuges decreased at both scales during this period (Fig.
5). There was no significant difference in forage quality
between refuges and non-refuges, but the green
biomass and sward height in refuges were significantly
lower than those in non-refuges (Table 3).

223

Field type Mean 95% CI n F1,98 P

Nitrogen (%) Refuges 3.9 3.7–4.1 73 0.55a 0.462
Non-refuges 4.1 3.8–4.4 25

Green biomass (g DW/m2) Refuges 90.2 72.9–107.5 75 9.88 0.002
Non-refuges 141.5 118.7–164.3 25

Sward height (cm) Refuges 4.0 3.0–4.9 75 5.94 0.017
Non-refuges 6.1 5.2–6.9 25

a F1,96; calculated using transformed data.

Table 3. Food quality and quantity in and outside refuges in the Lauwersmeer area (The Netherlands).       

Test df Value P

Lagrange Multiplier (lag) 1 34.150 <0.0005
Robust LM (lag) 1 7.008 0.008
Lagrange Multiplier (error) 1 27.457 <0.0005
Robust LM (error) 1 0.315 0.575

Table 2. Diagnostics for spatial dependence using Lagrange
Multiplier tests.
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Figure 5. Monthly numbers of recorded GPS locations of eight Barnacle Geese in the provinces of Friesland and Groningen (A) and
the Lauwersmeer area (B), from 1 February to 18 May 2008. The percentage of locations recorded in refuges for each month is
shown above each bar.  
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DISCUSSION

Although our observations were based on a sample size
as small as eight tagged birds, the study demonstrated
clearly that amount of food, distance to roosts, and the
location of refuges affected the distribution of spring
staging Barnacle Geese. Food quality did not seem to
affect goose distribution. Indeed, the sites selected by
geese were of sufficiently high forage quality (nitrogen
concentrations from 2.6% to 5.5%), which was well
beyond the limit for Barnacle Geese of 2.4% (Prop &
Deerenberg 1991, Amano et al. 2004). This lack of food
quality effect is different from previous field experimen-
tal studies (Bos et al. 2005, van der Graaf et al. 2007),
which demonstrated that fertilized plots were preferred
above control plots. A possible reason is that for the
experimental studies, switching between plots requires
a negligible amount of energy to be spent on travelling,
whereas, at the habitat level, the energy saving benefit
of minimising the distance to roosts might overrule any
food quality effect. 

The observed dome-shaped relationship between
sward height and grazing intensity reveals that an
intermediate sward height is preferred by Barnacle
Geese. Our findings emphasize the importance of
sward height in determining the distribution of geese at
the habitat level. Sward height manipulation can thus
be an important tool in luring geese to refuge areas,
thereby reducing grazing of vulnerable crops (Vickery
& Gill 1999). 

Distance to the nearest roost significantly influ-
enced grazing intensity. Areas located within 2 km from
the roost were preferred by geese over areas located
beyond 2 km, and geese seldom used areas located
more than 4 km from roosts. This finding is comparable
with observations in the United Kingdom, where
Barnacle Geese were found to feed within an average
distance of 3.6 km from  roosts (Owen et al. 1987).

The eight tracked geese utilized refuges much more
intensively than non-refuges, indicating the importance
of refuges. Methods to scare geese developed for non-
refuge areas may play a prominent role in chasing birds
away. Forage conditions in non-refuges, however, also
decreased the usability of these areas for geese, due to
tall swards. The mean sward height was 6 cm in non-
refuges while the optimal sward height for birds the
size of Barnacle Geese is 3 cm (Heuermann 2007).
From February to May, utilization of refuges decreased,
possibly because food became depleted, forcing geese
to use non-refuge areas.
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SAMENVATTING

In de winter van 2008 werden acht Brandganzen Branta leucop-
sis bij het Lauwersmeer voorzien van een satellietzender. Dit
bood de mogelijkheid te zien waar de vogels zich van dag op
dag ophielden tot ze in de loop van april en mei naar het noord-
oosten wegtrokken. De gebiedskeuze in de noordelijke provin-
cies kwam goed overeen met het al bekende verspreidings-
patroon van de Brandgans met concentraties in het Lauwers-
meergebied, langs de Wadden- en IJsselmeerkust van Friesland,
op Schiermonnikoog en in de Dollard. Meer gedetailleerd
onderzoek in het Lauwersmeergebied liet zien dat de acht
ganzen de meeste tijd doorbrachten in delen die door de over-

heid voor ganzenopvang waren aangewezen (“foerageergebie-
den”). De ganzen foerageerden bij voorkeur binnen een straal
van 2 km van de slaapplaatsen in het Lauwersmeer. Daarbuiten
werd minder dan 17% van de tijd doorgebracht. De gebiedskeu-
ze van de ganzen was afhankelijk van de lengte van het gras;
gras met een lengte van 3–6 cm werd geprefereerd boven korter
of langer gras. De kwaliteit van het gras (bepaald aan de hand
van het eiwitgehalte) bleek niet van invloed te zijn op de
gebiedskeuze. Kennelijk voldeed het eiwitgehalte overal aan de
behoeftes van de ganzen. (JP)
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