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Tooth histology of the parareptile Soturnia caliodon

from the Upper Triassic of Rio Grande do Sul, Brazil

SERGIO FURTADO CABREIRA and JUAN CARLOS CISNEROS

A histological analysis of the dentition of the small procolo−

phonid parareptile Soturnia caliodon reveals detailed infor−

mation concerning tooth implantation and replacement for

this taxon. The presence of acrodont tooth implantation is ver−

ified, which contradicts current models for procolophonid

dentition. A heterogeneous enamel layer, that reaches large

thickness on the cusps, and a broad secondary dentine are also

recorded. These structures provide a very stable occlusal mor−

phology that extends the useful life of the teeth. During the

process of replacement, old teeth were not pushed out but re−

absorbed. The evidence indicates that Soturnia caliodon had a

very low rate of tooth replacement which constitutes a valu−

able adaptation for its high−fibre herbivorous niche.

Introduction

Procolophonids are the most successful clade of parareptiles,

being notable for developing several specializations for herbi−

vory (Reisz and Sues 2000; Cisneros 2008) which played an im−

portant role for the survival of this group during more than 50

million years until the end of the Triassic. Some of these adapta−

tions, such as the acquisition of transversely expanded molari−

forms, evolved in procolophonids independently and earlier

than in other tetrapod lineages of the Triassic such as cynodonts,

therocephalians or trilophosaurids. Despite the significant role

of the dentition through the evolutionary history of the group,

our knowledge of procolophonid tooth histology is basically re−

stricted to some comments on the enamel of Procolophon trigo−

niceps based on SEM analysis (Sander 1999). The recently de−

scribed Soturnia caliodon (Cisneros and Schultz 2003) is the

only Gondwanan member of the Leptopleuroninae, a very char−

acteristic clade of procolophonids that dominated during the

Late Triassic (Sues et al. 2000; Fraser et al. 2005; Cisneros

2008). New material of this species is used here to provide a de−

scription of the tooth histology of a procolophonid.

Institutional abbreviation.—UFRGS, Universidade Federal do

Rio Grande do Sul, Porto Alegre, Brazil.

Other abbreviation.—EJL, enamel−dentine junction layer.

Material and methods.—Specimen UFRGS PV1112T (Fig.

1A) consists of a partial left maxilla and pterygoid, bearing the

second incisiform (I2) and well preserved first and second

molariforms (M1–M2), and a partial mandible in occlusion with

two complete molariforms (m1–m2). UFRGS PV1112T was

collected from the type locality, a exposure of the Caturrita For−

mation in the Municipality of Faxinal do Soturno (29�33'27'' S,

53�26'56'' W), Rio Grande do Sul, Brazil. The local fauna at

Faxinal do Soturno is considered to be early Norian in age

(Rubert and Schultz 2004; Bonaparte and Sues 2006; Langer et

al. 2007). Tooth and related bone tissues were studied through

the use of a polarized light microscope, which allows detailed

observation of the internal structure and organization of ele−

ments. The specimen was embedded in polystyrene resin, and

posteriorly ground down using a diamond grinding wheel.

Several photographs were taken, during successive stages of

wear, using a digital camera through a petrographic microscope

equipped with polarized light.

Results

Enamel.—The tooth enamel of Soturnia caliodon is aprismatic

(Figs. 1E–G, 2A, B, E). In the region of the cusps, “crystallites”

(sensu Carlson 1990) are virtually perpendicular to the enamel−

dentine junction layer (Fig. 2A) and are oriented in a straight

line towards the enamel surface with no evidence of abrupt

changes in direction or decussation. In the region between the

apex and the cervix, the crystallites lie slightly oblique to the

EJL, showing very weak sigmoid curvatures (Fig. 2B) pointing

towards the enamel surface. Enamel crystallites are parallel to

one another and lack inter−prism sheaths.

No structural features that could suggest more intra−struc−

tural enamel complexity were found, such as incremental lines

or other internal structures. This pattern is characteristic of

aprismatic enamel (Carlson 1990). Tooth enamel partially cov−

ers the external surface, from the cusps to a level close to the cer−

vix, where part of the root bulb dentine is exposed. Tooth

crowns show considerable variation of enamel presence and

thickness. The molariforms possess a thick and well distributed

enamel on its apical surface (maximum thickness ~260 μm), but

it becomes progressively thinner towards the cervical region,

disappearing completely before reaching the cervix (Fig. 1F).

Dentine.—The dentine walls are thick and the crown pulp cavi−

ties are notably broad. Older teeth possess thick dentary walls and

exhibit a volume reduction of the pulp cavity, which is associated

with occlusal wear surfaces. Primary dentine from the most apical

regions of the crowns shows roughly straight dentinal tubules
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Fig. 1. The procolophonid Soturnia caliodon Cisneros and Schultz, 2003, UFRGS PV1112T, from the Norian (Upper Triassic) Caturrita Formation of Rio

Grande do Sul, Brazil. Partial left maxilla and mandible, before preparation (A), and during initial stages of preparation (B). C. I2 (to the left) and M1 (to the

right), showing the limits of tooth morphogenetic fields (indicated by arrows), reticular bone tissue, fragmentary dentine, indicating tooth resorption in M1.

D. A pronounced secondary dentine pulp deposition (indicated by an arrow) in m2. E. m1, note that enamel is completely absent in the cervix. F. Portion of

m2 crown, showing the transition of thick enamel in the apex (to the top) to a very thin enamel close to the cervix (to the bottom). G. M1, M2, m1 and m2.

Note remnant dentine fragments in most of M1. A–D in labial view, anterior is to the left. E–G in lingual view and under polarized light.
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(Fig. 2A, E), whereas dentine in the cervical regions shows

slightly more irregular tubules (Fig. 2C). Approximately three in−

cremental lines within the dentine are observed in all teeth (Fig.

2C). These lines are interpreted as an evidence of variation in

dentine apposition in ectothermic vertebrates (Carlson 1990).

Due to the fact that these incremental lines are strongly outlined in

Soturnia we think that they reflect a very important event during

the development of the individual. We suggest that they are a re−

sult of physiological stimuli produced by the beginning of masti−

cation at an early morphogenetic stage, as it is generally observed

in mammals (Berkovitz et al. 2002). Thus, these incremental lines

represent a division between primary and secondary dentine. The

secondary dentine pulp deposition is pronounced both in the

occlusal wear areas that form “basins” (Cisneros and Schultz

2003: figs. 2a, 3b) in the maxillary molariforms and under cusps,

making the internal walls of some pulp cavities to become irregu−

larly thick, as can be seen in M2 (Fig. 1D).

The outline of each tooth resembles a bulb (Figs. 1E, 3) with

an expanded root base forming a short dentine pedicle that is an−

chored in compact cortical bone and fixed by attachment bone tis−

sue (Figs. 1E, 2D, F). There are no true roots; the teeth are fixed

only through short pedicles on the tooth bearing bone walls.

Tooth implantation.—Teeth are situated on compact cortical

bone tissue of intramembranous origin. Most bone cell lacunae,

which have an elongated shape, are oriented anteroposteriorly

along the dentary (Fig. 2F), suggesting that the osseous lamellae

were oriented also in this way. Bone cell lacunae possess differ−

ent shapes when associated with a dental pedicle, indicating dif−

ferent stages of osteogenesis. Elongated bone cell lacunae indi−

cate a more mature bone and low cell synthesizing rates. Globu−

lar bone cell lacunae that are associated with numerous vascular

canals indicate bone tissue with high remodelling activities

(Enlow 1969; Francillon−Vieillot et al. 1990).

Vascular canals for nutrient delivery can be seen extending to

the thin pulp cavity that is located within the pedicle (Fig. 2F) and

to the actual pedicle base. The external walls of the dentinary

pedicle are largely covered by a non−organized and heavily vascu−

larized bone tissue, that we recognize as attachment bone tissue

which provides greater tooth adherence. As it can be observed,

this model of tooth implantation is typically acrodont as the teeth

do not have true root cylinders. These tooth pedicles are merely

short extensions of the cervix, bearing irregular dentinary projec−

tions, confined within lamellary bone and attachment bone. There

is no evidence of alveolar structures (sockets), cementum or

periodontal membrane in the dentition of Soturnia.

Tooth replacement.—Significant osteological variations, which

are interpreted as representing tooth replacement processes were

observed in only one of the five teeth that underwent histological

preparation. Both the base and the cervix walls of M1 (Fig. 1B, C)

feature irregular bone trabeculae and fragmentary dentine. This

osseous arrangement suggests that the bone had a large number of

irregularly anastomosed vascular canals, a pattern that is compati−

ble to that seen in reticular bone tissue (Enlow 1969; Francillon−

Vieillot et al. 1990). This bone pattern is strongly suggestive that

a process of osseous resorption and remodelling was taking place

in this region at the time of death, very likely related to the process

of future odontogenesis. A vertical line of strong discontinuity

within the ossification pattern (Fig. 1B, C, see arrows) can be

traced between the tooth implantation pedicles of the second and

third maxillary molariforms, and less marked discontinuities out−

line the bases of all teeth and their supporting bone regions. Re−

striction of this process of bone activity and resorption to M1 in−

dicates that these lines represent the limits of tooth morpho−

genetic fields that are responsible for induction and control of the

odontogenetic developmental processes. Similar discontinuity

lines were noted in the mandible of the procolophonid Libo−

gnathus sheddi by Small (1997: fig. 3) who described them as

“replacement pits”. Furthermore, the pulp cavity shows irregu−

larly arranged fragmentary dentine laminae (Fig. 1G) also sepa−

rated by matrix. The presence of these dentine remains confirms

that the dentinary walls were suffering a resorption process, prob−

ably under the influence of the dentinoclasts. This process will

end in a complete removal of the tooth cylinder. This would cre−

ate an empty tooth locus, a condition that likely anticipates a re−

placement process.

Discussion

Three basic models of tooth implantation have been proposed for

procolophonids: acrodonthy (Broom 1905), protothecodonthy

(Broili and Schröeder 1936, also referred as “subthecodonthy”)

and ankylothecodonthy (Sues and Olsen 1993). Acrodonthy can

be briefly defined as the condition when a tooth is fused to the sur−

face of the bone without a socket (Peyer 1968). Protothecodonthy

and ankylothecodonthy are models usually described as being

characterized by the fusion of tooth roots to alveolar structures

through attachment bone, with larger roots (and consequently,

larger sockets) distinguishing the ankylothecodont condition (see

discussion in Small 1997). Several authors (e.g., Gow 1977; Li

1983; Sues and Olsen 1993; Small 1997) classify procolophonid

dentition as being either protothecodont or ankylothecodont. Be−

sides Soturnia, the tooth implantation and replacement of two

other leptopleuronine procolophonids have been described: Libo−

gnathus sheddi (Small 1997) and Hypsognathus fenneri (Sues et

al. 2000). Small (1997) classifies the implantation of Libognathus

as protothecodont and concludes that all procolophonids must

have this pattern. In addition, this author proposes that the replace−

ment teeth of Libognathus sheddi force the old teeth out. Sues et

al. (2000) do not specify if Hypsognathus fenneri possesses a

protothecodont or an ankylothecodont dentition but clearly men−

tion the presence of roots fused to sockets. Sues et al. (2000) also

propose that the new teeth of this taxon push out the old teeth as in

Libognathus. It has to be noticed that all these observations on the

dentition of procolophonids were not supported by detailed histo−

logical analysis of specimens.

Despite the ankylothecodont pattern of tooth implantation

being proposed for a number of reptiles, including rhyncho−

saurs, trilophosaurids and prolacertiforms (Chatterjee 1974;

Benton 1984), we are not aware of any histological studies sup−

porting these models. Indeed, the development of a tooth im−
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Fig. 2. The procolophonid Soturnia caliodon Cisneros and Schultz, 2003, UFRGS PV1112T, from the Norian (Upper Triassic) Caturrita Formation of Rio

Grande do Sul, Brazil. A. Enamel and primary dentine from the apical region of m2. B. Enamel and primary dentine from the region between the apex and

the cervix of m2. The slightly sigmoid curvature of the crystallites is highlighted by a dashed line. C. Primary and secondary dentine in the anterior portion

of the cervical region of m2. Note the irregular primary dentinal tubules compared to those in the apical region (A and E). D. Attachment bone in the poste−

rior region of the base of m2. E. Primary dentine in the apical region of m2. F. Tooth implantation in m1 and part of m2. Attachment bone, characterized by

globular or irregular bone cell lacunae, is predominant in the reddish areas of the photograph. Dentine is shown in blue, note some small amounts of pedicle

dentine within the dentary bone. Dentary bone tissue, represented in yellow and orange, showing predominance of elongated and anteroposteriorly directed

bone cell lacunae. The apex is placed to the left in B and C. All photographs taken using polarized light.
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plantation characterized by roots fused to sockets (both ankylo−

thecodonthy and protothecodonthy) would necessarily be con−

strained to the embryological suppression of two periodontal

structures: periodontal ligament and cement. These structures,

together with the alveolar bone, are known to originate from the

same tooth foliculum (Carlson 1990; Ten Cate 1997; Berkovitz

et al. 2002). For this reason, the fusion of alveoli to roots by at−

tachment bone—and the necessary absence of periodontal liga−

ment and cement—would be unlikely in any tetrapod. Soturnia

caliodon, as shown in this study, possesses a dentition that is

clearly acrodont, without sockets.

As described above, the specimen studied shows one tooth,

M1, apparently undergoing a substitution process. This tooth

seems to be heavily worn, showing perforation of the pulp cham−

ber. Reticular bone tissue occupies the whole basal region, and in a

later stage, this element would proceed to the removal of all rem−

nant bone and tooth tissue. After the removal of both the tooth to

be substituted and the supporting bone, a new tooth element would

begin its formation, eruption and fusion. The pulp degradation of a

worn and perforated tooth would trace the posterior stages of re−

sorption of a “dead tooth” and activate a new tooth germ. Thus,

old teeth are not pushed out, but recycled.

The processes of tooth substitution would take place slowly

during the skeletal growth of the individual, following an alter−

nate and polyphyodont pattern. The production of secondary

(physiological) dentine extends the useful life of a tooth, by pre−

cluding exposition of the pulp cavity. In this way, the function−

ality of the occlusal morphology is effectively maintained

through the internal addition of secondary dentine, in opposition

to the wearing of the occlusal basins. The heterogeneous distri−

bution of enamel, showing a great thickness in the cusps and

progressive thinning towards the occlusal basins (where it is

completely absent) further preserves the occlusal morphology

and expands the useful life of the teeth. By being a high−fibre

herbivorous reptile Soturnia should be restricted to a low rate of

tooth substitution. This is implied by the fact that high−fibre

plant cells, being low in nutritional value and rich in cellulose,

must be macerated more consistently, for more efficient diges−

tion and absorption. The loss of one tooth would be critical for

the individual, particularly for a species with a highly reduced

tooth formula like Soturnia, with only two upper incisors and

two to three molariforms. The highly resistant teeth of this taxon

are consistent with a strategy of a low rate of tooth replacement.

Previous authors (Ivakhnenko 1975; Gow 1977; Li 1983) had

noted that tooth replacement is an extremely rare event in other

procolophonid species.

We recognize that it would be premature to suggest that all

procolophonids possess the same model of tooth implantation

and replacement described here, especially considering the mor−

phological diversity and different feeding habits of members of

this clade (Reisz and Sues 2000; Cisneros 2008). Nevertheless,

judging from the marked anatomical similarity of the dentition

of procolophonids that are closely related to Soturnia caliodon,

such as Hypsognathus fenneri, Leptopleuron lacertinum, Libo−

gnathus sheddi, and the unnamed Chinle Formation form (Fra−

ser et al. 2005), it should be expected that these leptopleuronines

possess the same or similar pattern of tooth implantation and

substitution revealed by the Brazilian taxon. It is also worth not−

ing that Colbert (1946) had already proposed that the dentition

of Hypsognathus fenneri is fully acrodont.

Conclusions.—A histological analysis shows that the dentition

of the small parareptile Soturnia caliodon is clearly acrodont.

None of the two models of tooth implantation that are tradition−

ally proposed for procolophonids, protothecodonthy or ankylo−

thecodonthy, are applicable to this procolophonid, and are un−

likely to be found in other parareptile taxa, due to the embryo−

logical constraints that prevent the development of these tooth

patterns. The teeth of Soturnia possess a very stable occlusal mor−

phology which extends their useful life and indicates a low rate of

tooth replacement, necessary for the consumption of high−fibre

plant material. The pattern of tooth implantation and replacement

of this taxon may be applicable to other Late Triassic procolo−

phonids but further analyses are necessary to obtain a better pic−

ture of other members of the Procolophonidae and the Para−

reptilia as a whole.
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Fig. 3. The procolophonid Soturnia caliodon Cisneros and Schultz, 2003,

from the Norian (Upper Triassic) Caturrita Formation of Rio Grande do

Sul, Brazil. Reconstruction of a lower molariform tooth in parasagittal sec−

tion based on m1 from UFRGS PV1112T.
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