

Diurnal Resting Site Selection and Daytime Feeding Behaviour of Wild Malayan Flying Lemur Galeopterus variegatus in Western Java, Indonesia

Authors: Tsuji, Yamato, Prayitno, Bambang, Nila, Sarah, Widayati,

Kanthi Arum, and Suryobroto, Bambang

Source: Mammal Study, 40(1): 35-45

Published By: Mammal Society of Japan

URL: https://doi.org/10.3106/041.040.0107

Diurnal resting site selection and daytime feeding behaviour of wild Malayan flying lemur *Galeopterus variegatus* in Western Java, Indonesia

Yamato Tsuji^{1,*}, Bambang Prayitno², Sarah Nila³, Kanthi Arum Widayati³ and Bambang Suryobroto³

- ¹ Primate Research Institute, Kyoto University, Japan
- ² Natural Resources Conservation Center, Java West, Indonesia
- ³ Bogor Agricultural University, Java West, Indonesia

The Malayan flying lemur (*Galeopterus variegatus*) belongs to the Order Dermoptera, and is mainly distributed in the southern parts of Thailand, Indochina, Malay Peninsula, Sumatra, Java, Borneo, and the islands nearby (Lim 2007). It inhabits both lowland and mountainous areas, and is found in a large variety of habitats, including primary and secondary forests, coconut groves, and rubber plantations (Lim 2007; Baba 2008). Recent data on mitochondrial DNA of the flying lemurs have shown that this species is closely related to primates, likely related to our distant relatives (Schmitz et al. 2002; Lim 2007).

Feeding, ranging, social, and reproductive behaviour data are fundamental information on animal ecology. However, to the best of our knowledge, information on habitat utilisation by flying lemurs and its determinants remains limited, and basically, we only know that flying lemurs are arboreal and nocturnal animals (Byrnes et al. 2011), that during the daytime they can be found in tree holes or hollows (Yasuma 1994), hanging from branches, or holding onto tree trunks, and that they are active at dusk (Lim 2007). Recent studies have reported about their home range size, nocturnal activity, and habitat preference (Baba 2008; Lim et al. 2013). With regard to feeding behaviour, information about Malayan flying lemur is fragmental (Agoramoorthy et al. 2006; Lim 2007; Baba 2008; Dzulhelmi and Abdullah 2009), compared to its sister Philippine species (Wischusen and Richmond 1998).

In this study, we investigated diurnal resting site selection by the wild Malayan flying lemurs inhabiting West Java, Indonesia, at the plant-species and landscape level. We focused on forest structure, such as the extent of concealed areas and canopy cover, as these often influence resting site selection in other mammal species (Heymann 1995; Di Bitetti et al. 2000; Tsuji 2011). Lim et al. (2013) reported that flying lemurs in Singapore preferred for-

ested areas with higher coverage; therefore, we aimed to confirm this finding in our study site. Besides we record several food items eaten in daytime. The relative importance of the daytime feeding seems lower than nocturnal one, but providing fundamental information on diet of the rarely studied-mammalian species would be meaningful.

Methods

Study site

The Pangandaran Nature Reserve (PNR, hereafter) is located at 108°40'E and 7°43'S on the southern coast of West Java, Indonesia, on a small peninsula approximately 3-km long and 2-km wide (Sumardia and Kartawinata 1977). The elevation of this peninsula ranges 0-150 m a.s.l., and its average height is approximately 100 m. The average annual rainfall from 1990 to 2010 was 2,940 mm, although it presents some inter-annual variation (Rosleine and Suzuki 2012). Air temperature and humidity from 1984 to 1985 were 22.5-35.0°C and 88.5-96.5%, respectively (Kool 1993). The nature reserve is located at the top of a peninsula, bordering with the rest of the island through an isthmus approximately 200-m wide, linking the peninsula to the mainland. The reserve is divided into two zones: a public use zone (nature recreation park) of 38 ha, and the actual nature reserve, which consists of 370 ha and includes the remaining area. Our study area was confined within the northern section of the nature recreation park, where forest rangers frequently observe flying lemurs (Prayitno, pers. obs.), but exact number of animals inhabiting the area was unknown. The study area included a small section of swamp forest within the nature reserve, and a beach forest in the northern part. The total study area was 27.7 ha. Topography inside the study area was relatively flat, and a paved forest path (5-m wide), is set inside the recreation park for visitors' convenience.

^{*}To whom correspondence should be addressed. E-mail: ytsuji1002@gmail.com

Vegetation survey

Between 2011 and 2014, we conducted a vegetation survey within the study site in order to gather information regarding the forest structure. We divided the study area into 20×20 m-sized quadrats (n = 693), and recorded the GPS location of each tall tree (> 5 m) using a handheld GPS receiver (GPS MapCSx, Garmin Co., Kansas, USA). The quadrat size was chosen for being appropriate to evaluate the relationship between forest structure and diurnal resting site selection by the flying lemurs, since they are solitary animals, and their home range sizes in Western Java are between 1.3 and 1.8 ha (Baba 2008). For each tall tree, we recorded species, tree height (TH) and the height of the lowest branch (TB) within 0.1 m, using a handheld laser rangefinder (TruPulse200, Laser Technology Inc., Colorado). On the other hand we roughly measured the maximum crown diameter (CD) and categorised the values into seven classes by eye: (1) 0-4.9 m, (2) 5.0–9.9 m, (3) 10.0–14.9 m, (4) 15.0–19.9 m, (5) 20.0–24.9 m, (6) 25.0–29.9 m, and (7) \geq 30.0 m. Subsequently, we estimated the crown volume (CV, m^3) of given tall tree by the following formula:

$$CV = (TH - TB) \times \left(\frac{CD}{2}\right)^2 \times \pi$$

For our convenience we assumed that representative values of CD (m) for each class to be (1) 2.5, (2) 5, (3) 10, (4) 15, (5) 20, (6) 25, and (7) 30, respectively. In order to quantify the total CV within a given quadrat, we summed up the CV value for each tall tree within the quadrat.

Diurnal resting site/trees

We conducted four intermittent field surveys between 2011 and 2013 (153 days in total). We recorded the location of flying lemurs in the forest observed during our fieldworks (from 6h00 to 18h00 in usual). Whenever we observed a flying lemur resting or feeding, we recorded (1) the GPS location of the animal, (2) number of animals (except for cubs still closely associated with their mothers) found within 10 m, (3) plant species, and (4) height of the tall trees occupied by the flying lemurs. If we found the flying lemurs more than one time at same tall tree in same day we recorded only once to avoid double-counting. If we observed daytime feeding by the flying lemurs, we recorded the plant species and parts eaten. Our methodology adhered to Indonesian/Japanese legal requirements.

Statistical analyses

To test for tree species preference, we compared the frequency of tree use as diurnal resting site and the relative percentage of tall trees of the given species present in the area, using a chi-square test of independence. To test for tree height class preference as diurnal resting sites, we compared the frequency of utilisation (we did not consider number of individuals) for each tree height class with the frequency of the tree class within the study area, using a two-sample Kolmogorov-Smirnov test. For the latter analysis, we classified *TH* values into seven classes: (1) 5.0–9.9 m, (2) 10.0–14.9 m, (3) 15.0–19.9 m, (4) 20.0-24.9 m, (5) 25.0-29.9 m, (6) 30.0-34.9 m, and (7) 35.0-39.9 m. We compared mean tree heights among three preference classes (preferred, neutrally used, and avoided) using a Kruskal-Wallis test. In order to confirm Lim et al. (2013)'s finding, suggesting that flying lemurs predominantly select areas with a dense canopy cover, the effects of the TH(m) and the $CV(m^3)$ on the frequency of quadrat utilisation were tested using generalised linear models (GLM). Specifically, we conducted two-level analyses: initially, we tested the relationship between plant characteristics and quadrat utilisation, assuming that the error structure of our data is binomially distributed (i.e., fitted to a logistic regression). In addition, we tested the relationship between plant characteristics and frequency of utilisation for each quadrat that was used by the flying lemurs at least once. In this case, we assumed that the error structure of our data followed a Poisson distribution (i.e., fitted to a Poisson regression). For the GLM analyses, we used TH and CV as explanatory variables. The level of significance (α) was set at 0.05 for each, and all data analyses were performed using the statistical software R 2.15 (R Development Core Team 2012).

Results

Vegetation in the study site

In total, 132 different woody plant species, belonging to 39 families, were recorded within 27.7 ha of the study area (Appendix 1). The total number of tall trees (> 5 m in height) within the study site was 9,624. The trees were mainly from the following 10 species: *Syzygium antisepticum* (Myrtaceae, n = 1,305), *Dysoxylum caulostachyum* (Meliaceae, n = 1,130), *Tectona grandis* (Verbenaceae, n = 674), *Pterospermum javanicum* (Sterculiaceae, n = 668), *Swietenia macrophylla* (Meliaceae, n = 504), *Buchanania arborescens* (Anacardiaceae,

Table 1. Tree species used as diurnal resting sites by Malayan flying lemurs and their preference in Pangandaran Nature Reserve, Western Java, Indonesia

.	Б. 1	α :	Diurnal r	esting sites	Der	Density		Statistics		
No.	Family	Species	#	%	#	%a	χ^2	Р	Preference	
1	ANACARDIACEAE	Mangifera sp.	8	4.35	36	0.37	52.7	< 0.001***	(+)	
2		Buchanania arborescens	3	1.63	428	4.45	2.6	0.108		
3	ANNONACEAE	Cananga odorata	1	0.54	29	0.30	0.0	1.000		
4	COMBRETACEAE	Terminalia catappa	4	2.17	22	0.23	18.5	< 0.001	(+)	
5	ELAEOCARPACEAE	Elaeocarpus glaber	3	1.63	2	0.02	61.9	< 0.001***	(+)	
6	FLACOURTIACEAE	Casearia grewiaeiolia	1	0.54	140	1.45	0.5	0.481		
7		Hydnocarpus heterophylla	1	0.54	355	3.69	4.0	0.044*	(-)	
8	HERNANDIACEAE	Hernandia peltata	9	4.89	78	0.81	28.1	< 0.001***	(+)	
9	LECYTHIDACEAE	Barringfonia spicata	15	8.15	35	0.36	185.0	< 0.001***	(+)	
10	LEGUMINOSAE	Cynometra ramiflora	15	8.15	31	0.32	203.3	< 0.001***	(+)	
11	LYTHRACEAE	Lagerstroemia speciosa	2	1.09	70	0.73	0.0	0.899		
12		Lagerstroemia flosregineae	4	2.17	49	0.51	6.3	0.012*	(+)	
13	MELIACEAE	Dysoxylum alliaceum	5	2.72	129	1.34	1.5	0.214		
14		Dysoxylum caulostachyum	5	2.72	1,130	11.74	11.5	< 0.001***	(-)	
15		Swietenia macrophylla	12	6.52	504	5.24	0.3	0.573		
16	MORACEAE	Ficus benjamina	3	1.63	5	0.05	36.9	< 0.001***	(+)	
17		Ficus sumatrana	3	1.63	27	0.28	6.7	0.010*	(+)	
18		Ficus subcordata	1	0.54	3	0.03	2.4	0.119		
19		Ficus annulata	1	0.54	8	0.08	0.7	0.418		
20		Ficus variegata	4	2.17	3	0.03	86.2	< 0.001***	(+)	
21		Ficus pubinervis	10	5.43	8	0.08	240.5	< 0.001***	(+)	
22		Ficus microcarpa	1	0.54	3	0.03	2.4	0.119		
23		Ficus sp.	1	0.54	_	_	_	_		
24	MYRTACEAE	Syzygium antisepticum	1	0.54	1,305	13.56	21.7	< 0.001***	(-)	
25		Eugenia polyantha	6	3.26	242	2.51	0.1	0.701		
26	RUBIACEAE	Nauclea orientalis	2	1.09	17	0.18	3.7	0.055		
27	SAPINDACEAE	Erioglossum rubiginosum	5	2.72	160	1.66	0.6	0.429		
28	STERCULIACEAE	Pterospermum javanicum	25	13.59	668	6.94	9.1	0.003**	(+)	
29		Pterospermum divirsifolium	4	2.17	89	0.92	1.8	0.186		
30		Sterculia coccinea	9	4.89	117	1.22	15.5	< 0.001***	(+)	
31		Pterocymbium javanicum	1	0.54	1	0.01	5.8	0.016*	(+)	
32	VERBENACEAE	Tectona grandis	6	3.26	674	7.00	3.0	0.084		
33		Vitex pubescens	3	1.63	333	3.46	1.2	0.267		
	Others	_	10	5.43	_	_	_	_		
	Total		184	100.00						

^a Percentage of tree density was obtained by dividing number of tall trees by total tall trees (n = 9,624).

n = 428), Polyalthia lateriflora (Annonaceae, n = 356), Hydnocarpus heterophylla (Flacourtiaceae, n = 355), Croton argyratus (Euphorbiaceae, n = 339), and Vitex pubescens (Verbenaceae, n = 333). Among them, T. grandis and S. macrophylla were artificially planted species (Rosleine and Suzuki 2012). These 10 major species represented more than 63% of all recorded tall trees within the study site, and the top 30 species represented over the 80% of the trees. Mean (\pm SD) TH and the CV

were 12.4 ± 5.8 m (range: 5.0–36.9) and 273 ± 690 m³ (range: 0–15,975), respectively. See Appendix 1 for further details.

Diurnal resting site description and preference

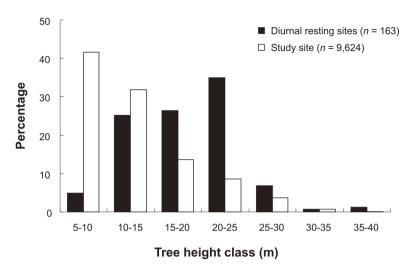
During the study period, we observed flying lemurs holding onto trees on 184 occasions. In most cases (n = 147), we found single individuals or a pair of a mother and a cub, but sometimes more than one adult individual

^{***:} *P* < 0.001, **: *P* < 0.01, *: *P* < 0.05.

^{(+):} preferred, (-): avoided.

were observed together (n = 33 for two adults, n = 2 for three adults, and n = 2 for four adults); we could not identify the sex of animals. From all the woody plant species analysed, 33 different species, belonging to 16 families (representing 25% of all plant species recorded in the study site), were used as diurnal resting trees by the flying lemurs (Table 1). Species such as Pterospermum javanicum (Sterculiaceae, 25 times), Barringtonia spicata (Lythraceae, 15 times), Cynometra ramiflora (Leguminosae, 15 times), Swietenia macrophylla (Meliaceae, 12 times), and Ficus pubinervis (Moraceae, 10 times) were the ones most used by the flying lemurs, and these top five species represented approximately the half of all the trees used for resting sites (Table 1). Among these 33 tree species, 14 were significantly preferred by flying lemurs for their density (chi-square test of independence, P < 0.05), while three tree species (Hydnocarpus heterophylla, Dysoxylum caulostachyum, and Syzygium antisepticum) were significantly avoided by the flying lemurs for their density (P < 0.05) (Table 1). Except for *Pterospermum* javanicum, the top 10 tree species mentioned above were not preferred by flying lemurs. Mean tree heights did not significantly differ among preferred, neutrally used, and avoided tree species (Kruskal-Wallis test, $\chi^2 = 4.9$, df = 2, P = 0.083). On the contrary, tree height used by flying lemurs ranged between 5-40 m and peaked at 10-25 m, which was significantly greater than that within the study site (two-sample Kolmogorov–Smirnov test, $\chi^2 = 122.9$, P < 0.001) (Fig. 1). In summary, flying lemurs had a tendency to prefer taller trees as their diurnal resting sites.

GLM analyses showed that quadrats with trees with a higher mean TH had a tendency to be selected as diurnal resting sites (GLM: z = 3.38, P < 0.001); however, total CV of the quadrat did not affect site selectivity (z = -1.22, P = 0.222). On the other hand, quadrats with higher mean TH and lower total CV showed a significant tendency to be repeatedly used (GLM, TH: z = 2.50, P = 0.012; CV: z = -3.31, P < 0.001) (Fig. 2).


Daytime diet of the flying lemurs

During the study period we observed flying lemurs performed daytime feeding on 11 separate occasions. They fed on eight different woody species and one liana species (*Agelaea macrophylla*, Connaraceae), representing 10 different items. The list of items previously reported as eaten by flying lemurs is shown in Table 2. Five out of nine plant species were new records as Malayan flying lemurs' diets. In our study area, flying lemur mainly feed on young leaves, following the observations reported in

previous studies from other study sites (Table 2). In addition, flying lemurs consumed water from *Cynometra ramiflora* (Leguminosae) leaves once (Table 2).

Discussion

Malayan flying lemurs used 33 different tree species as their diurnal resting sites. The diversity of species used as diurnal resting sites in this study was much greater than that reported for palm plantations in Pandeglang, where flying lemurs used mainly coconut palm and betel palm trees within the plantations (Baba 2008). Tree utilisation did not depend on tree density. The lemurs significantly preferred 14 out of 33 tree species, while three tree species were significantly avoided. Except for Pterospermum javanicum (Sterculiaceae), none of top 10 tree species presenting the highest density were preferably chosen, and for three of them (Hydnocarpus heterophylla, Dysoxylum caulostachyum, and Syzygium antisepticum) this tendency was significant (i.e., avoided). Furthermore, the planted species Tectona grandis was never used by the flying lemurs, despite it presented the higher density. There was no significant difference in mean tree height among the three preference classes (preferred, neutrally used, and avoided), and it was not clear whether there was any type of tree preference at the species level. On the other hand, at the landscape level, we found that quadrats with higher mean tree height had a tendency to be selected as diurnal resting sites with higher probability, and quadrats with higher TH and/or lower CV were repeatedly used as resting sites. Thus, it is likely that flying lemurs preferred isolated taller trees regardless of the species. These results suggest that the species preference detected (Table 2) was a reflection of forest structure and not of the characteristics of the tree species. Possibly, the reason behind this pattern of tree selection is associated with gliding efficiency, as the flying lemurs are mainly active after sunset, and start to glide from their diurnal resting sites to feeding trees (Lim 2007). Flying lemurs have been recorded to glide up to 136 m in a single gliding event, with a corresponding drop in vertical height of 10-12 m (Walker 1983). To achieve such long distance glides, the trees being at a distance might be advantageous. Predator avoidance is likely to be an additional reason swaying the preference toward isolated tall trees; in fact, Philippine monkey-eating eagles (Pithecophaga jefferyi) are known to prey primarily on Philippine flying lemurs, representing 54–90% of the eagles' total diet (Lim 2007). Although no previous studies have

Fig. 1. Comparison of tree height distribution (5-m interval) between the trees used as diurnal resting sites (filled bars) and those species that grow within the study site (27.7 ha, open bars). For the former, we omitted 21 out of 184 cases due to lack of information regarding tree height.

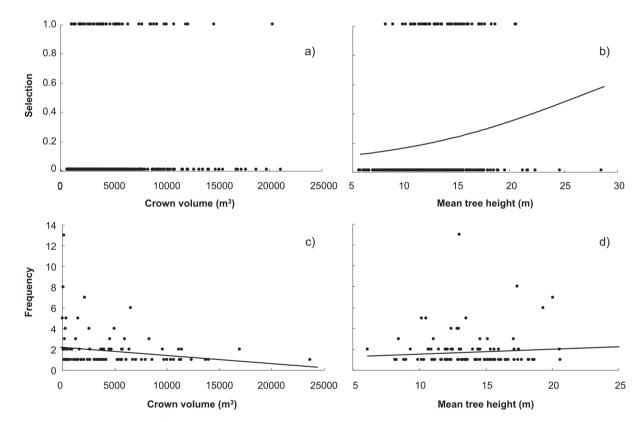


Fig. 2. Effects of crown volume (m³) (a, c) and mean tree height (m) (b, d) on the proportion of resting sites among quadrats within our study site (27.1 ha) (a, b) and number of repeated use (c, d). Lines show significant relationships.

comprehensively investigated predation on Malayan flying lemurs, there have been several reported cases of predation by raptors, pythons, wildcats, and long-tailed macaques (Harahap and Sakaguchi 2003; Lim 2007). Potential predators, such as monitor lizards, civets, feral dogs, and long-tailed macaques occur within the PNR (Brotoisworo 1991). On one occasion, we actually observed a flying lemur rapidly climbing a tree and escaping

into the canopy after a group of macaques closed up on the flying lemur while holding on the tree trunk (Tsuji, pers. obs.). Using isolated tall trees would be advantageous to decrease predation risk. This preference for taller trees has also been reported in plantation of Pandeglang (Baba 2008), where middle-sized carnivores, such as leopard cats and civets, occur (Nakamoto et al. 2006).

The number of daytime food items consumed by flying

Table 2. List of diets of wild Malayan flying lemurs obtained from five study sites

					Study site		
No.	Family	Species	Bukit Timah, Singapore	Singapore Zoo, Singapore	Bako, Malaysia	Pandeglang, Indonesia	Pangandaran Indonesia ^a
1	ANACARDIACEAE	Buchanania arborescens			ML, W		YL
2		Campnosperma auriculata	YL	ML			
3		Campnospermum sp.			SP		
4	AQUIFOLIACEAE	Ilex cymosa			ML, SP		
5	PALMAE (ARECACEAE)	Oncosperma tigillarium			SP		
6	BOMBACACEAE	Ceiba pentandra				L, FB, YF	
7		Durio zibethinus				L, B	
8	CLUSIACEAE	Calophyllum soulattri			ML, W		
9	CONNARACEAE	Agelaea macrophylla					YL
10	EUPHORBIACEAE	Macaranga pruinosa			L		
11	LAURACEAE	Persea americana				L, FB, Fl	
12	LEGUMINOSAE	Cynometra ramiflora				, ,	YL, W
13		Parkia speciosa				B, L	
14		Petophorum pterocarpus	YL	YL			
15		Pithecellobium lobatum				L	
16		Saraca cauliflora		YL			
17		Saraca thaipingensis	YL				
18	LORANTHACEAE	Scurrula sp.				L	
19	MELIACEAE	Melia azedarach				L	
20	MORACEAE	Artocarpus kemando	ML				
21		Artocarpus heterophyllus				L	
22		Ficus microcarpa			L		FR
23		Ficus pubinervis					YL
24		Ficus variegata					YF
25		Ficus sp.				L	YL
26	MYRTACEAE	Eugenia polyantha					YL
27		Rhodamnia cinera	YL	ML			
28		Syzygium acuatinervium			L, SP		
29		Syzygium grande	YL	ML, YL	2, 51		
30		Syzygium lineatum	YL	1.12, 12			
31		Syzygium pachyphyllum	1.5	ML, FR			
32		Syzygium palembanicum		ML			
33		Syzygium sp.		1122	L		
34	ORCHIDACEAE	Arachnis sp.			RT		
35	SAPINDACEAE	Nephelium lappaceum			111	L	
36	STERCULIACEAE	Sterculia coccinea					YL
37	RHIZOPHORACEAE	Gynotroches axillaris			L		112
38	VERBENACEAE	Vitex pubescens			L, SP		
39	FORMICIDAE	Paratrechina longicornis			ANT		
	Reference	wan coma tongicorius	Lim (2007)	Agoramoorthy et al. (2006)	Dzulhelmi and Abdullah (2009)	Baba (2008)	This study

ANT: ants, B: buds, FL: flowers, FR: fruits, L: leaves (including both mature and young), ML: mature leaves, YF: young fruits, YL: young leaves, SP: sap, W: water.

lemurs in this study was 10 (nine species). Predominantly, the lemurs consumed young leaves, following the observations reported in previous dietary studies (Lim 1997; Agoramoorthy et al. 2006; Baba 2008; Dzulhelmi and

Abdullah 2009). Five out of nine species (*Agelaea macrophylla*, *Cynometra ramiflora*, *Ficus pubinervis*, *F. variegate*, and *Nephelium lappaceum*) were newly recorded as part of the flying lemurs' diet. Flying lemurs

^a Data collected in Pangandaran is daytime feeding.

have been observed to feed in several plant, such as *Vitex pubescens* (in Bako, Malaysia; Dzulhelmi and Abdullah 2009), and *Syzygium* sp. (in Bako and Singapore; Agoramoorthy et al. 2006; Dzulhelmi and Abdullah 2009); however, flying lemurs did not feed on these species within the study area at least in daytime, even though they are present in the PNR. Although there is a possibility that we just did not directly observe this feeding behaviour, these results suggest certain level of behavioural plasticity in food selection in response to the food availability.

In this study we did not conduct any observations regarding nocturnal activity. Flying lemurs' ranging and feeding habits at night are therefore unclear. In future studies, observations of nocturnal behaviours, using night vision cameras and GPS collars, including home range utilisation and dietary sources, should be conducted for further understanding of their ecology.

Acknowledgments: We would like to thank R. Tsuji for her assistance during the vegetation survey. We would like to thank the forest rangers of the PNR, especially Mr. Y. Hendrayana and O. Norwana, for access to their facilities. We particularly thank T. Oshida and two anonymous reviewers for their constructive comments. We would like to thank to Drs. A. Takahashi and N. Imai for their advice on the statistics. We also thank the staff of the Department of Biology of Bogor Agricultural University for their constructive comments on an earlier version of this manuscript. This study was funded by a grant from the AS-HOPE of the Japan Society of Promotion of Science to Y. Tsuji (2010–2011), Grant-in-Aid from the Department of Academy and Technology of Japan (No. 23780160 and 24405018), and Grant for John Mung Program from Kyoto University to Y. Tsuji (2013).

References

- Agoramoorthy, G., Sha, C. M. and Hsu, M. J. 2006. Population, diet and conservation of Malayan flying lemurs in altered and fragmented habitats in Singapore. Biodiversity and Conservation 15: 2177–2185.
- Baba, M. 2008. Ecology of Malayan flying lemur. In (T. Katayama, ed.) Colugo: Are They Flying Monkey? pp. 119–154. Yasaka Shobo, Tokyo (in Japanese).
- Brotoisworo, E. 1991. The lutungs (*Presbytis cristata*) in Pananjung-Pangandaran Nature Reserve. Comparative Primatology Monographs 3: 45–148.
- Byrnes, G., Lim, N. T. L., Yeong, C. and Spence, A. J. 2011. Sex

- differences in the locomotor ecology of a gliding mammal, the Malayan colugo (*Galeopterus variegatus*). Journal of Mammalogy 92: 444–451.
- Di Bitetti, M. S., Vidal, E. M. L., Baldovino, M. C. and Benesovsky, V. 2000. Sleeping site preference in tufted capuchin monkeys (*Cebus apella nigritus*). American Journal of Primatology 50: 257–274.
- Dzulhelmi, M. N. and Abdullah, M. T. 2009. Foraging ecology of the Sunda colugo (*Galeopterus variegatus*) in Bako National Park, Sarawak, Malaysia. Malayan Nature Journal 61: 285–294.
- Harahap, S. A. and Sakaguchi, N. 2003. Monitoring research on the Javan leopard *Panthera pardus melas* in a tropical forest, Gunung Halimun National Park, West Java. In (N. Sakaguchi, ed.) Research on Endangered Species in Gunung-Halimun National Park, Research and Conservation of Biodiversity in Indonesia, Vol. XI, pp. 2–20.
- Heymann, E. W. 1995. Sleeping habits of tamarins, Saguinus mystax and Saguinus fuscicollis (Mammalia, Primates, Callitrichidae), in north-eastern Peru. Journal of Zoology (London) 237: 211–226.
- Kool, K. M. 1993. The diet and feeding behavior of the silver leaf monkey (*Trachypithecus auratus sondaicus*) in Indonesia. International Journal of Primatology 14: 667–700.
- Lim, N. T. L. 2007. Colugo: The Flying Lemur of South-East Asia.

 Draco Publishing and Distribution Pte Ltd., Singapore, 80 pp.
- Lim, N. T. L., Giam, X., Byrnes, G. and Clements, G. R. 2013. Occurrence of the Sunda colugo (*Galeopterus variegatus*) in the tropical forest of Singapore: a Baysian approach. Mammalian Biology 78: 63–67.
- Nakamoto, A., Kinjo, K., Baba, M., Doi, T., Boeadi and Izawa, M. 2006. Mammalian fauna in a coconut palm plantation recorded by photo-traps and sightings in West Java, Indonesia. Bulletin of the Kitakyushu Museum of Natural History and Human History, Series A 4: 121–123.
- R Development Core Team. 2012. R: A Language and Environment for Statistical Computing. Version 2.15.0. Vienna, Austria: R Foundation for Statistical Computing.
- Rosleine, D. and Suzuki, E. 2012. Secondary succession at abandoned grazing sites, Pangandaran Nature Reserve, West Java, Indonesia. Tropics 21: 91–103.
- Schmitz, J., Ohme, M., Suryobroto, B. and Zischler, H. 2002. The colugo (*Cynocephalus variegatus*, Dermoptera): the primates' gliding sister? Molecular Biology and Evolution 19: 2308–2312.
- Sumardja, E. A. and Kartawinata, K. 1977. Vegetation analysis of the habitat of banteng (*Bos javanicus*) at the Pananjung Pangandaran Nature Reserve, West Java. Biotrop Bulletin 18: 1–49.
- Tsuji, Y. 2011. Sleeping-site preferences of wild Japanese macaques (Macaca fuscata): the importance of nonpredatory factors. Journal of Mammalogy 92: 1261–1269.
- Walker, E. P. 1983. Mammals of the World. John Hopkins University Press, Baltimore, 1362 pp.
- Wischusen, E. W. and Richmond, M. E. 1998. Foraging ecology of the Philippine flying lemur (*Cynocephalus volans*). Journal of Mammalogy 79: 1288–1295.
- Yasuma, S. 1994. An invitation to the mammals of East Kalimantan. Tropical Rain Forest Research Project JTA-9 (a)-137 Japan International Corporation Agency and Directorate General of Higher Education, Ministry of Education and Culture, Republic of Indonesia.

Received 24 July 2014. Accepted 8 January 2015. Editor was Tatsuo Oshida.

Appendix 1.List of woody plants recorded by quadrate survey at Pangandaran Nature Reserve, Western Java, Indonesia

No.	Family	Species	Local name	n	%	Tree height (m)		Crown volume (m³)	
. 10.	1 aiiiiy					Mean $\pm SD$	Range	Mean $\pm SD$	Range
1	ANACARDIACEAE	Dracontomelon mangiferum Bl.	Dahu	53	0.55	12.2 ± 3.8	5.1–21.7	63.1 ± 147.7	0.5–918.9
2		Spondias pinnata (L. F.)	Kedongdong hutan	4	0.04	20.1 ± 4.6	16.0–27.9	728.0 ± 384.8	202.2-1,272.3
3		Mangifera foetida Lour.	Limus	1	0.01	8.7	-	86.4	-
4		Mangifera sp.	Mangga pari	36	0.37	13.3 ± 6.3	5.3-28.7	474.2 ± 688.6	3.9-2,921.7
5		Buchanania arborescens (Bl.) Bl.	Pohpohan	428	4.45	10.8 ± 3.5	5.0-28.6	91.2 ± 164.1	0.0-1,688.6
6		Gluta renghas L.	Rehunghas	1	0.01	30.1	-	72.2	-
7	ANNONACEAE	Stelechocarpus burahol Hook. F. et Thomson	Burahol	17	0.18	11.6 ± 3.5	7.3–21.0	51.9 ± 64.1	24.5–306.3
8		Cananga odorata Hook. F. et THOMS.	Kananga	29	0.30	22.2 ± 7.1	6.1–32.5	782.0 ± 833.6	11.8–3,298.7
9		Polyalthia lateriflora King	Sauheun	356	3.70	9.9 ± 3.2	5.0-21.2	66.3 ± 110.6	0.0-1,209.5
10	APOCYNACEAE	Cerbera manghas L.	Bintaro	1	0.01	9.6	-	34.4	-
11	AQUIFOLIACEDAE	Ilex pleiobrachiata Loes.	Kibonteng	4	0.04	18.9 ± 3.2	15.0-23.7	477.9 ± 645.3	24.5-1,590.4
12	BIGNONIACEAE	Dolichandrone spathacea (L.f.) Seem.	Kijaran	20	0.21	11.3 ± 2.9	5.9–15.7	495.4 ± 480.4	21.1–1,853.5
13		Oroxylum indicum (L.) Benth. ex Kurz	Pongporang	11	0.11	11.6 ± 4.2	7.1–20.3	110.0 ± 196.0	4.9–628.3
14	BOMBACACEAE	Bombax ceiba L.	Randu alas	1	0.01	26.7	=	4,074.3	=
15	COMBRETACEAE	Terminalia bellirica (Gaerth.) Roxb.	Jaha	1	0.01	36.0	-	6,440.3	-
16		Terminalia catappa L.	Ketapang	22	0.23	11.4 ± 2.9	5.6-17.6	710.7 ± 584.7	25.5-2,102.9
17	CRYPTERONIACEAE	Crypteronia paniculata Bl.	Kibanen	1	0.01	20.5	-	306.3	-
18	DILLENIACEAE	Dillenia sp.	Junti	2	0.02	5.9 ± 0.8	5.1-6.7	20.6 ± 3.9	16.7-24.5
19		Dillenia excelsa (Jack) Girg	Kisegel	114	1.18	8.7 ± 2.8	5.0–20.7	115.1 ± 162.6	6.4–1,013.2
20	EBENACEAE	Diospyros truncata Zoll. et Moritzi	Kicalung (Balung injuk)	11	0.11	12.5 ± 4.1	5.3–18.7	4.4 ± 40.6	5.4–153.2
21	ELAEOCARPACEAE	Elaeocarpus glaber Bl. Bijdr.	Katulampa	2	0.02	14.1 ± 1.4	12.7–15.5	458.5 ± 350.5	108.0-809.0
22	EUPHORBIACEAE	Alchornea rugosa (Lour.) Muell. Arg.	Burutu	16	0.17	8.1 ± 2.6	5.4–14.3	25.6 ± 12.2	4.4–58.9
23		Antidesma bunius (L.) Spreng.	Huni	13	0.14	11.4 ± 5.5	5.4–24.7	177.1 ± 292.2	8.8–1,107.4
24		Aporosa sphaeridophora Merr.	Kiendog	1	0.01	7.1	-	21.1	-
25		Croton argyratus Bl.	Parengpeng	339	3.52	9.4 ± 3.1	5.0-21.0	61.4 ± 100.4	2.0-973.9
26		Glochidion molle Bl.	Kihuut	1	0.01	6.8	-	7.9	-
27		Mallotus ricinoides (Pers.) Mull.Arg.	Kibajing	42	0.44	8.6 ± 1.6	5.2–11.4	49.3 ± 45.0	0.0–149.2
28		Suregada glomerulata (Blume) Baill.	Kibeunteur	8	0.08	6.2 ± 1.2	5.0-8.9	18.0 ± 6.4	4.9–25.5
29	FLACOURTIACEAE	Casearia grewiaefolia Vent.	Kiminyak	140	1.45	11.0 ± 4.1	5.0–22.7	58.1 ± 148.2	0.0-1,421.6
30		<i>Hydnocarpus heterophylla</i> (Bl.) Shloot.	Buntut lutung	355	3.69	10.4 ± 3.8	5.0–33.2	59.2 ± 269.4	0.0–4,859.7
31		Flacourtia rukam Zoll. & Mor. or Scolopia spinosa (Roxb.) Warb.	Rukem	96	1.00	8.5 ± 2.6	5.0–16.7	46.8 ± 54.2	0.0–369.1

Appendix 1. continued

No.	Family	Species	Local name	n	%	Tree hei	ght (m)	Crown volume (m³)	
١υ.	ганну	Species	Locai Hallic	rl	/0	Mean \pm SD	Range	Mean ± SD	Range
32	GUTTIFERAE (CLUSIACEAE)	Garcinia dioica Bl.	Ceuri	18	0.19	11.3 ± 2.2	7.4–14.2	44.7 ± 65.2	2.0-306.3
33		Garcinia celebica L.	Manggis hutan	4	0.04	7.3 ± 1.9	5.4-9.6	20.2 ± 9.0	12.3-35.3
4		Calophyllum inophyllum L.	Nyamplung	21	0.22	9.6 ± 3.4	5.5-18.7	444.6 ± 512.1	17.7–1,767.
5	HERNANDIACEAE	Hernandia peltata Meisn.	Borogondolo	78	0.81	13.7 ± 4.2	5.0-24.6	473.3 ± 568.5	11.8–2,668.
86	LAURACEAE	Neolitsea cassia (L.) Kosterm.	Huru	31	0.32	10.2 ± 4.0	5.3–24.1	75.1 ± 77.6	4.9–314.2
7		Neolitsea sp.	Huru batu	15	0.16	8.5 ± 2.7	5.6-15.0	39.1 ± 37.0	3.4-115.8
8		Actinodaphne sp.	Huru payung	6	0.06	9.3 ± 2.2	6.1-13.0	74.0 ± 50.6	17.7-149.2
39	LECYTHIDACEAE	Barringtonia asiatica (L.) Kurz	Butun	1	0.01	6.7	-	70.7	-
10		Barringfonia spicata Bl.	Putat	35	0.36	17.2 ± 5.9	6.2-28.2	677.5 ± 843.3	2.0-2,921.7
11		Barringtonia racemosa (L.) Spreng.	Sanggom	1	0.01	8.0	-	123.7	-
12		Chydenanthus exelsus (Bl.) Miers.	Balundeng	14	0.15	9.8 ± 4.7	5.1–19.6	515.5 ± 871.4	11.8–2,880.
13	LEGUMINOSAE	Afzelia javanica (Miq.) J. Leonard	Kijulang	3	0.03	23.9 ± 0.8	22.7–24.5	390.7 ± 269.0	172.8–769.
14		Albizia lebbeck (L.) Benth.	Kitoke	9	0.09	17.4 ± 4.3	9.3–22.9	241.0 ± 274.4	3.9–769.7
5		Tamarindus indica L.	Asem	3	0.03	11.6 ± 3.6	8.6–16.7	166.9 ± 49.4	121.7–235.
6		Cynometra ramiflora L.	Kateng-kateng	31	0.32	9.6 ± 2.9	5.6–20.8	229.8 ± 319.9	16.2–1,500.
17		Desmodium umbellatum (L.) Benth.	Kibalanak	12	0.12	6.6 ± 0.9	5.3-8.8	79.1 ± 31.4	17.7–117.8
18		Pongamia pinnata (L.) Pierre	Kipahang	3	0.03	9.9 ± 1.7	8.1–12.2	392.7 ± 189.8	125.7–549.
19		Trachylobium verrucosum Hayne	Kisapi	4	0.04	18.2 ± 5.0	14.1–26.6	295.6 ± 373.2	32.4–934.6
50		Dalbergia latifolia Roxb.	Sonokeling	23	0.24	16.6 ± 5.2	7.1–25.7	390.6 ± 502.9	8.8–2,173.6
51		Cassia javanica L.	Tanggoli	2	0.02	12.2 ± 2.6	9.6–14.8	254.3 ± 240.5	13.7–494.8
52	LYTHRACEAE	Lagerstroemia speciosa (L.) Pers.	Benger	70	0.73	14.1 ± 5.8	5.1–25.7	279.9 ± 505.7	2.0–2,562.4
53		Lagerstroemia flosregineae Retz.	Bungur	49	0.51	12.6 ± 4.3	5.9–21.2	271.1 ± 516.0	2.0–2,474.0
54	MALVACEAE	Abelmoschus moschatus Medik.	Kakapasan	106	1.10	7.7 ± 1.9	5.0–13.6	31.9 ± 34.8	2.0–233.7
55		Hibiscus similis Bl.	Waru	133	1.38	7.7 ± 1.5	5.0-12.1	195.5 ± 227.3	8.8–1,643.4
56		Hibiscus tiliaceus L.	Waru laut	10	0.10	7.1 ± 1.2	5.2-9.2	201.3 ± 150.3	68.7–432.0
57		Schoutenia ovata Korth.	Walikukun	6	0.06	10.7 ± 2.3	6.7-13.0	79.8 ± 67.2	3.4–166.9
58	MELIACEAE	Dysoxylum alliaceum Bl.	Kadoya	129	1.34	10.3 ± 4.0	5.0-21.2	124.5 ± 359.9	2.0–2,721.4
59		Dysoxylum densiflorum (Bl.) Miq.	Karaminan	1	0.01	27.5	=	3,180.9	=
50		Dysoxylum caulostachyum Miquet	Kokosan monyet	1,130	11.74	12.0 ± 3.8	5.0–30.9	113.1 ± 281.5	2.5–5,937.0
61		Swietenia macrophylla King	Mahoni	504	5.24	18.0 ± 5.1	5.0–31.5	$807.0 \pm 1,166.1$	4.9–8,001.2
62		Aglaia barbatula K. & V.	Siloar	1	0.01	15.7	-	47.6	-
63	MIMOSAE	Acacia auriculiformis A.Cunn. ex Benth.	Acasia	16	0.17	9.3 ± 3.9	5.0-16.8	209.0 ± 224.7	13.7–777.5

Appendix 1. continued

No.	Family	Species	Local name	n	% -	Tree height (m)		Crown volume (m³)	
V O.	1 anniy	my Species	Local name			Mean \pm SD	Range	Mean $\pm SD$	Range
64	MORACEAE	Artocarpus elasticus Reinw. ex Bl.	Benda	4	0.04	17.6 ± 3.3	13.3–21.0	151.2 ± 50.4	86.4–204.2
65		Ficus annulata Bl.	Kiara koneng	8	0.08	17.7 ± 2.7	12.8-21.3	$1,063.2 \pm 840.6$	49.1–2,670.4
66		Ficus benjamina L.	Beringin	5	0.05	12.5 ± 3.4	6.3-16.0	344.8 ± 288.6	5.9-830.6
67		Ficus elastica Roxb.	Kendal	1	0.01	11.5	-	432.0	-
68		Ficus hispida L.	Bisoro	2	0.02	12.0 ± 1.8	10.2-13.7	141.4 ± 39.3	102.1-180.6
69		Ficus microcarpa L.F.	Pereng	3	0.03	13.3 ± 1.4	12.1-15.2	867.9 ± 960.9	172.8–2,226.6
70		Ficus pubinervis Bl.	Kopeng	8	0.08	12.6 ± 4.2	7.8-18.7	231.6 ± 332.1	22.6-1,083.8
71		Ficus septica Burm.	Kiciat	147	1.53	9.8 ± 2.9	5.2-18.7	54.5 ± 110.4	2.9-1,113.3
72		Ficus sumatrana Miq.	Kiara beas	27	0.28	17.0 ± 7.4	5.8-36.7	$2,083.3 \pm 3,074.4$	58.9-14,137.2
73		Ficus subcordata Bl.	Kiara kebo	3	0.03	17.6 ± 7.3	7.7–25.2	457.5 ± 341.0	29.5-863.9
74		Ficus variegata Bl.	Kondang	3	0.03	18.8 ± 6.0	12.2-26.8	$1,062.3 \pm 755.9$	329.9–2,102.5
75		Ficus sp.	Kiara sp.	17	0.18	19.1 ± 7.7	7.1–35.0	$1,930.1 \pm 3737.9$	11.8–15,975.0
76	MYRISTICACEAE	Horsfielldia glabra (Reinw. Ex Bl.) Warb.	Kalapacung	39	0.41	15.3 ± 3.5	6.5–22.7	232.0 ± 226.8	11.8-824.7
77		Myristica guatterifolia DC.	Kimokla	26	0.27	10.4 ± 4.0	5.0-18.3	70.3 ± 56.2	4.9-225.8
78	MYRTACEAE	Decaspermum fruiticosum J.R. Forst. & G. Fost.	Ipis kulit	55	0.57	11.4 ± 4.2	5.4–26.4	197.1 ± 322.9	3.4–1,714.1
79		Eugenia polyantha Wight.	Salam	242	2.51	14.4 ± 5.3	5.1–31.3	156.8 ± 492.9	0.5-4,523.9
30		Rhodamnia cinerea Jack	Kibesi	67	0.70	9.1 ± 2.8	5.6-19.7	46.6 ± 75.2	0.0-565.5
31		Syzygium antisepticum (Bl.) Merr.& L.M.Perry	Kipancar	1,305	13.56	9.3 ± 2.7	5.0–24.8	79.7 ± 125.4	0.5–1,311.6
32		Syzigium aqueum Alston	Jambu air	2	0.02	7.6 ± 0.4	7.2-8.0	51.8 ± 24.8	27.0-76.6
33		Syzygium racemosum (Bl.) DC.	Коро	22	0.23	9.5 ± 2.4	5.5–13.8	56.2 ± 120.7	10.3–596.9
84		Syzigium sp.	Jambu alas	13	0.14	7.9 ± 2.1	5.0-11.6	80.9 ± 65.3	1.5–194.4
	PALMAE (ARECACEAE)	Arenga obtusifolia Mant	Langkap	85	0.88	10.5 ± 3.3	5.4–24.0	101.5 ± 153.8	10.8–895.4
86		Cocos nucifera L.	Kelapa	32	0.33	12.1 ± 3.9	6.7–22.1	78.9 ± 99.8	11.8–589.0
87		Corypha gebanga Bl.	Gebang	2	0.02	11.8 ± 4.4	7.4–16.2	283.7 ± 171.8	111.9–455.5
38		?	Palm	1	0.01	13.9	-	80.5	-
89	PANDANACEAE	Pandanus furcatus Roxb.	Cangkuang (Pandan hutan)	23	0.24	6.9 ± 1.5	5.1–10.9	35.2 ± 26.5	2.0-82.5
90		Pandanus bidur Jungh. ex Miq.	Pandan gede	3	0.03	14.0 ± 4.9	7.7–19.7	91.3 ± 54.1	24.5–157.1
	PHYLLANTHACEAE	Baccaurea racemosa (Reinw. ex Bl.) Müll.Arg.	Menteng	30	0.31	9.0 ± 2.1	5.1–12.8	59.6 ± 43.5	6.4–151.2
	RUBIACEAE	Ixora paludosa Kurz	Soka	5	0.05	9.3 ± 6.0	5.2–21.1	146.2 ± 252.9	9.8–651.9
93		Nauclea obtusa Bl.	Dempol	2	0.02	8.1 ± 1.7	6.4–9.7	98.2 ± 58.9	39.3–157.1
94		Nauclea orientalis (L.) L.	Kelepu	17	0.18	18.5 ± 5.8	9.9–34.3	752.8 ± 786.1	76.6–2,580.0
95		Nauclea pallida Bl. Ex Miq.	Tengek caah	98	1.02	6.8 ± 1.6	5.0-12.7	46.9 ± 53.6	2.5-424.1
96		Nauclea sp.	Kitaleus	2	0.02	16.1 ± 8.2	7.9–24.3	499.2 ± 490.4	8.8–989.6
97		Neonauclea excelsa (Bl.) Merr.	Cangcaratan	30	0.31	13.4 ± 4.7	5.3–24.6	239.0 ± 297.2	2.0–1,237.0
98		Hypobathrum frutescen Bl.	Kihapit	87	0.90	7.2 ± 1.9	5.0-13.7	26.6 ± 24.4	1.0-127.6
99		Plectronia glabra Benth. & Hook.f. ex Kurz.	Kokopian (Kikopi)	17	0.18	12.8 ± 3.4	7.9–20.8	52.3 ± 47.4	8.3–149.2
100		Psychotria viridiflora Reinw. Ex Bl.	Kikores	4	0.04	8.3 ± 3.0	5.8-13.2	59.6 ± 47.5	7.9–123.7

Appendix 1. continued

No. Family	Species	Local name	n	%	Tree height (m)		Crown volume (m ³)	
Tallilly	Species			/0	Mean $\pm SD$	Range	Mean $\pm SD$	Range
101 RUTACEAE	Acronychia laurifolia (Bl.)	Kijeruk (Jujulukang)	18	0.19	9.4 ± 2.0	6.1–12.9	33.1 ± 37.8	7.4–135.5
102	Clausena excavata Burn. f.	Kibaceta	3	0.03	6.5 ± 0.9	5.5-7.6	29.5 ± 12.5	20.1-47.1
03 SAPINDACEAE	Erioglossum rubiginosum (Roxb.) Bl.	Kilalayu	160	1.66	9.7 ± 3.3	5.1–25.8	62.1 ± 139.6	2.5–1,449.1
104	Erioglossum sp.	Kilalayu batu	1	0.01	14.3	-	47.6	-
105	Mischocarpus sundaicus Bl.	Kihoe	26	0.27	7.3 ± 2.1	5.0-13.6	60.0 ± 57.5	1.0-233.7
106	Nephelium lappaceum L.	Rambutan	1	0.01	11.2	=	23.1	=
107	Pometia pinnata J.R.Forst. & G.Forst.	Leungsir	6	0.06	12.1 ± 5.7	6.0–19.4	482.0 ± 533.7	2.9–1,431.4
08	Schleichera oleosa (Lour.) Oken	Kosambi	112	1.16	11.9 ± 3.8	5.0–23.7	151.1 ± 271.9	3.4–1,453.0
09 SCROPHULARIA	CEAE Radermachera gigantea (Bl.) Miq.	Padali	1	0.01	20.9	-	471.2	-
110 STERCULIACEA	Heritiera littoralis Dryand.	Dungun	2	0.02	10.4 ± 4.6	5.8-15.0	137.9 ± 123.2	14.7–261.1
111	Kleinhovia hospita L.	Tangkolo	36	0.37	14.1 ± 3.6	7.0–21.5	$331.5 \pm 1,007.1$	19.1–6,220.
112	Pterocymbium javanicum R. Br.	Tang kalak	1	0.01	21.1	-	392.7	_
113	Pterospermum divirsifolium Bl.	Cerlang	89	0.92	10.8 ± 3.6	5.0–21.4	93.2 ± 190.8	3.4–1,453.0
14	Pterospermum javanicum Jungh RBR	Caruy	668	6.94	17.3 ± 7.4	5.1–36.9	$664.7 \pm 1{,}248.0$	0.0–9,817.
115	Sterculia coccinea Roxb.	Hantap heulang	117	1.22	18.5 ± 6.8	5.9–33.3	$636.9 \pm 1,017.9$	2.9–4,618.
116	Sterculia foetida L.	Kondang laer	2	0.02	17.7 ± 8.5	9.2–26.1	996.5 ± 917.9	78.5–1,914.
117	Sterculia urceolata Smith.	Jejebugan	48	0.50	7.2 ± 1.5	5.2-12.2	38.5 ± 38.5	2.0-182.6
118 THEACEAE	Ternstroemia sp.	Umpang	50	0.52	8.9 ± 2.0	5.5-13.7	37.5 ± 31.6	10.3–216.0
119 TILIACEAE	Grewia paniculata Roxb.	Derawak	41	0.43	8.7 ± 2.7	5.2-16.1	48.3 ± 50.5	2.0-243.5
120 ULMACEAE	Celtis philippensis Bl.	Kipepetek	48	0.50	11.8 ± 3.9	5.2-23.1	121.1 ± 195.4	2.5-918.9
121 URTICACEAE	Villebrunea rubescens Bl.	Nangsi	2	0.02	8.2 ± 0.9	7.3-9.1	73.1 ± 66.3	6.9–139.4
122 VERBENACEAE	Premna integrifolia L. Mant.	Singkil	1	0.01	8.3	-	518.4	=
123	Tectona grandis L.	Jati	674	7.00	21.0 ± 5.5	5.1–33.7	914.4 ± 956.3	5.4–5,654.5
124	Vitex pubescens Vahl.	Laban	333	3.46	14.4 ± 4.9	6.2-33.0	378.0 ± 510.5	0.0-3,552.0
125 VITACEAE	Leea angulata Korth. ex Miq.	Kibuaya	99	1.03	11.5 ± 3.7	5.4–24.7	140.3 ± 384.8	2.5–2,792.
126 ?	?	Katileng	3	0.03	13.1 ± 2.6	9.7–16.0	79.4 ± 62.1	29.5–166.9
127 ?	?	Kihurang	9	0.09	8.4 ± 3.7	5.4–17.5	88.4 ± 89.4	2.9-310.2
128 ?	?	Mata buta	1	0.01	12.1	-	51.1	_
129 ?	?	Panggor	1	0.01	25.6	-	384.8	-
130 ?	?	Sampang	2	0.02	18.8 ± 1.1	17.7–19.9	199.3 ± 2.9	196.3–202.
131 ?	?	Sembir	1	0.01	5.9	=	15.7	-
132 ?	?	Andong	26	0.27	9.8 ± 2.5	6.7–16.1	68.1 ± 69.5	2.5-337.7
Unknown			10	0.10	13.1 ± 7.5	6.1-27.4	443.3 ± 814.1	0.0-2,650.
Total			9,624	100.00	12.4 ± 5.8	5.0–36.9	273.5 ± 690.1	0.0-15,975