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Abundance estimators are often evaluated with simulations, or by comparing estimates to populations of known 
size. Advances in noninvasive genetic sampling have fueled an increase in the use of noninvasive genetic sampling-
based capture–recapture. However, when working with free-ranging populations of unknown size, managers often 
lack data necessary to select the appropriate estimator. This leads to uncertainty regarding how choice of estimator or 
sampling design influence estimates, and managers may select estimators based on funding or logistical constraints. 
Alternatively, comparing estimates from multiple estimators can provide managers with greater confidence in estimates, 
or highlight potential differences. We used noninvasive genetic sampling to estimate the abundance of free-ranging kit 
foxes Vulpes macrotis and coyotes Canis latrans. We generated estimates of abundance with two non-spatial likelihood-
based estimators: 1) robust design Huggins capture–recapture models and 2) single-occasion capture with replacement 
(CAPWIRE) models. We compared these with recently published estimates derived from spatially explicit capture–
recapture (SECR) models. For both species, estimates from Huggins models were generally lower than those from SECR. 
Abundance estimates from CAPWIRE, which was developed specifically for noninvasive genetic sampling and generates 
estimates from a single sampling occasion, tended to be biased low with high precision. Our results suggest that choice of 
estimator and sampling design can significantly influence estimates, and that the relationship between estimators varied 
between species. Our results further suggest that single-occasion sampling often employed with CAPWIRE abundance 
estimation may produce biased results and be inappropriate for species requiring dispersed sampling strategies.
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Animal abundance is a critical parameter for management 
and is most reliably estimated with capture–recapture 
methods (Williams et al. 2002). Conventional live-capture 
and recapture may be impractical for estimating abun-
dance ( N̂ ) for management-scale or long-term studies, 
particularly when species are difficult to capture, or when 
managers need to monitor multiple species concurrently. 
Noninvasive genetic sampling provides an alternative ‘cap-
ture’ method and involves the collection and genetic iden-
tification of biological material from the environment 
(Waits and Paetkau 2005, Schwartz  et  al. 2007). Statisti-
cal abundance estimators, or models, have been developed 
(Miller et al. 2005, Puechmaille and Petit 2007) or refined  

(Lukacs and Burnham 2005, Thompson  et  al. 2012) for 
use with noninvasive genetic sampling. These advance-
ments have facilitated an increase in the combined use of 
noninvasive genetic sampling and capture–recapture to meet 
management goals (Stenglein  et  al. 2010b, Piaggio  et  al. 
2016, Lonsinger et al. 2018).

Abundance estimators commonly used with noninvasive 
genetic data include non-spatial closed-population mod-
els, spatially explicit models and capture with replacement 
models. Non-spatial closed-population capture–recapture 
models assume geographic and demographic closure 
within primary sampling periods and require ≥2 second-
ary sampling occasions, during which animals are captured, 
released and remain available for recapture (Otis et al. 1978, 
Williams  et  al. 2002). Spatially explicit capture–recapture 
(SECR) models use spatially disparate captures of indi-
viduals to address capture heterogeneity among individuals 
associated with proximity to traps, and to estimate density 
( D̂ ) by evaluating the effective sampling area (Borchers and 
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Efford 2008); N̂  is a derived parameter ( N̂  = D̂  * effective 
sampling area) of SECR. Data collected via noninvasive 
genetic sampling differs from conventional live-capture data 
in that individuals can be captured >1 time within a sam-
pling occasion (Miller et al. 2005, Thompson et al. 2012). 
While SECR models can generate estimates based on a single 
sampling occasion (when individuals are captured at >1 loca-
tion; Efford 2011), capture with replacement (CAPWIRE) 
models have been developed specifically for noninvasive 
genetic sampling, exploiting repeat captures of individuals 
within a sampling event (Miller et al. 2005).

The performance of abundance estimators (i.e. accuracy 
and precision) is often evaluated using simulations (Petit 
and Valiere 2006, Borchers and Efford 2008, Lukacs et al. 
2009, Efford and Fewster 2013), or by generating estimates 
for populations of known size (Carothers 1973, Puechmaille 
and Petit 2007). However, in practice, managers are inter-
ested in N̂  for free-ranging populations of unknown size, 
and it is often unclear how the choice of estimator influences 
estimates. If N̂  varies substantially among estimators, reli-
ance on a single statistical model, without consideration of 
alternatives, may result in inaccurate estimates and misin-
formed management. Furthermore, differences in N̂  can be 
diagnostic of departures from model assumptions (Otis et al. 
1978) and provide guidance on which estimators are likely 
to be more robust.

We used noninvasive genetic sampling data from 
sympatric kit foxes Vulpes macrotis (hereafter foxes) and 
coyotes Canis latrans to generate likelihood-based estimates 
of abundance with two non-spatial statistical abundance 
estimators: 1) robust design Huggins closed-capture 
models and 2) single-occasion CAPWIRE models. We then 
compared these estimates to one another, and to estimates 
generated by Lonsinger  et  al. (2018) using multi-session 
SECR models. Abundance estimates generated from all 
three modeling frameworks represented the same spatio–
temporal extent and we aimed to compare these estimates 
within and between species in relation to model assump-
tions and evaluate if the choice of estimator and/or sampling 
design significantly influenced results. We hypothesized that 
for each species within each session, N̂  would exceed the 
minimum number known alive (MNKA) for all estima-
tors. Capture heterogeneity, if unaccounted for, can result in 
underestimation of abundance (Otis et al. 1978). Therefore, 
we expected N̂  from SECR models to be higher than non-
spatial estimates, as SECR accounts for heterogeneity not 
addressed by non-spatial models. Single-occasion sampling 
designs can be appealing to managers due to decreased effort 
and costs and have been demonstrated with simulations to 
produce reliable estimates of abundance. Thus, we hypoth-
esized that CAPWIRE estimates would be similar to those of 
the other estimators.

Material and methods

Terminology

Using a robust design, sessions were primary periods within 
which there were multiple secondary sampling occasions and 
populations were assumed to be closed (Pollock et al. 1990; 

Fig. 1); populations were assumed to be open between ses-
sions. For single-occasion CAPWIRE models, we incorpo-
rated only samples from the first sampling occasion within 
each session. Season indicated sessions representing the same 
climatic season across years (Fig. 1). Robust design and 
multi-session are used to indicate that parameters were esti-
mated across sessions within a single modelling framework, 
but are generally used for non-spatial and spatial models, 
respectively. Finally, we used ‘capture’ and ‘recapture’ to 
describe the identification of an individual (a unique geno-
type) through noninvasive genetic sampling.

Study site and sample collection

Our study site was ~3015 km2, including portions of the 
U.S. Army Dugway Proving Ground and surrounding 
federal lands (collectively hereafter, Dugway) in Utah, USA 
(Lonsinger et al. 2018). Dugway was characterized as Great 
Basin Desert with low-lying basins separated by mountains 
(~1200–2100 m). Land cover included cold desert playa, 
cold desert chenopod shrubland, vegetated and unvegetated 
dunes, and non-native invasive grasslands at lower elevations, 
and arid shrubland and open woodland at higher elevations 
(Lonsinger et al. 2017).

We conducted carnivore fecal DNA surveys along dirt 
and gravel roads during four sessions from 2013 to 2014: 
two winters (January to March) and two summers (July to 
August). We surveyed 30 randomly selected 5 km transects 
multiple times per session (hereafter, multi-occasion 
transects), with a sampling interval of ~14 days between 
occasions (Lonsinger  et  al. 2015a; Fig. 1). Additionally, 
we surveyed 2-km of transects (composed of four 500 m 
transects) within each of 60 sites once per session (hereaf-
ter, single-occasion transects); sites were randomly selected 
from a grid of 576 cells (each 6.25 km2) superimposed 
over the study area (Lonsinger  et  al. 2017). We collected 
~0.6 ml of fecal material from the side of each carnivore 
scat detected (Stenglein et al. 2010a) into 1.4 ml of DETS 
buffer (20% DMSO, 0.25 M EDTA, 100 µM Tris, pH 7.5 
and NaCl to saturation; Seutin et  al. 1991), and collected 
remaining portions for diet analyses (Gosselin et  al. 2017, 
Byerly et al. 2018). Sampling methods are further detailed in 
Lonsinger et al. (2018).

Based on sample accumulation rates (Lonsinger  et  al. 
2015a), we surveyed multi-occasion transects four times in 
winter 2013 and three times in summer 2013. We then 
performed power analyses to evaluate the number of occa-
sions required to achieve a coefficient of variation (CV) 
<10% for N̂  in each season for closed-capture analyses. 
For each analysis, we ran 1000 simulations in program 
MARK (White and Burnham 1999) using estimates of 
capture probability (p) from preliminary closed-capture 
models considering temporal variation in p and the num-
ber of individuals captured per session. We assumed no 
behavioral response to sampling: recapture probabilities 
(c) = p. Power analyses indicated our effort was insufficient 
to achieve desired levels of precision for fox N̂ , so we 
increased sampling in 2014 to five winter and four summer 
occasions (Fig. 1). During the final occasion of summer 
2014, we only collected scats identified as fox based on size 
(Lonsinger et al. 2015b).
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Genetic analyses

We restricted DNA extraction and polymerase-chain reac-
tion (PCR) amplification to a laboratory dedicated to low 
quantity and quality DNA to minimize contamination risk. 
We used mitochondrial DNA (mtDNA) to identify species 
(De Barba  et  al. 2014) and multiplexes with nine nuclear 
DNA (nDNA) loci and one sex identification locus for fox 
and coyote individual identification. Extraction methods, 
DNA storage and mtDNA PCR conditions are detailed 
in Lonsinger et  al. (2015a), while nDNA PCR conditions 
and scoring methods are detailed in Lonsinger et al. (2018). 
We minimized the influence of genotyping errors by using 
a multi-tubes approach (Taberlet  et  al. 1996), culling low 
quality samples (those failing mtDNA amplification or at 
≥50% of nDNA loci during initial replicates; Kohn et  al. 
1999, Paetkau 2003), and requiring heterozygous and homo-
zygous genotypes be observed ≥2 and ≥3 times, respectively 
(Lonsinger and Waits 2015). To reliably distinguish individ-
uals (i.e. probability that two siblings have identical multi-
locus genotypes <0.01; Waits et al. 2001), foxes and coyotes 
required genotypes at six and five loci, respectively (Lons-
inger et al. 2018). We performed up to eight nDNA PCR 
replicates for foxes, and six replicates for coyotes, and used 
ConGenR (Lonsinger and Waits 2015) to compare repli-
cates and establish consensus genotypes. We then established 
matches (i.e. multiple ‘captures’ of an individual) by com-
paring samples with identical or near identical multilocus 
genotypes (Lonsinger et al. 2018). For multilocus genotypes 
observed only once (i.e. potential single-capture individu-
als), we evaluated reliability with RELIOTYPE (Miller et al. 
2002) and retained samples with a reliability ≥ 99%.

Capture–recapture analyses

Capture–recapture data were analysed using maximum 
likelihood methods applied in non-spatial 1) Huggins 
closed-capture models (Huggins 1989) and 2) CAPWIRE 
models (Miller et al. 2005), and N̂  from these non-spatial 
models were compared to N̂  previously derived from multi-
session SECR models (Lonsinger et al. 2018). The Huggins 
closed-capture models were fit using the entire noninvasive 
genetic sampling data set (i.e. all samples with individual 
identification); for comparison, Lonsinger et al. (2018) used 
the same complete data set to generate SECR-based esti-
mates. For Huggins models, multiple captures of an individ-
ual within an occasion were collapsed to a binary response 
for encounter histories. The number of times a transect 

was surveyed (i.e. effort) varied among sites and seasons. 
To account for p on single-occasion transects in Huggins 
models, we distinguished males and females captured on 
multi-occasion transects from those captured only on single-
occasion transects (i.e. multi-occasion males, multi-occasion 
females, single-occasion males, single-occasion females), 
and for each sex applied the mean p estimated from multi-
occasion transects to single-occasion transects.

Non-spatial Huggins models were fit using a robust 
design (Huggins 1989, Pollock  et  al. 1990) in program 
MARK (White and Burnham 1999). Although this 
modelling framework provides estimates of survival (S), p, 
recapture (c), temporary immigration (1 − γ″) and tempo-
rary emigration (γ′), for purpose of comparing abundance 
estimators, we describe the model set, but focus on reporting 
estimates related to p and derived N̂ . We modelled appar-
ent survival considering models with constant, time-varying 
or trend in survival (Otis et al. 1978, Williams et al. 2002). 
We also considered models in which apparent survival varied 
by season or was influenced by an extreme winter (2013). 
We considered the effects of sex, individual heterozygosity 
and distance to water on apparent survival. For fox appar-
ent survival, we also considered a covariate of coyote activ-
ity. See Supplementary material Appendix 1 for details on 
individual covariates. We considered three movement mod-
els: random (γ′ = γ″), constant but different (γ′ ≠ γ″) and 
no (γ′ = γ″ = 0) movement. We did not expect a behavioural 
response to capture when using noninvasive genetic sam-
pling and set c = p. We modeled p as constant or varying by 
time, trend and sex within sessions, and considering additive 
models of sex with both time and trend. We combined each 
model for S, with each combination of models for move-
ment and p. We used Akaike’s information criterion with 
small sample size correction (AICc) and Akaike weights to 
compare the relative fit of models (Burnham and Anderson 
2002). Parameter estimates accounting for model-selection 
uncertainty were achieved by model-averaging (Burnham 
and Anderson 2002). We calculated variances and confi-
dence intervals for model-averaged estimates with the delta 
method (Williams et al. 2002). We tested for closure with 
CLOSETEST (Stanley and Burnham 1999).

CAPWIRE assumes equal effort across sites (Miller et al. 
2005). We fit separate CAPWIRE models for each session with 
a reduced data set that met the equal effort assumption and 
was intended to represent how managers would sample if using 
this estimator (single-occasion formulation). Specifically, we 
identified portions of the multi-occasion transects contained 
within each of the 576 grid cells used to select single-occasion 
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Figure 1. Graphical representation of the temporal sampling scheme (robust design) employed along multi-occasion transects for kit foxes 
Vulpes macrotis and coyotes Canis latrans in the Great Basin desert, Utah, 2013–2014. Populations were assumed to be geographically and 
demographically closed within sessions, and open between sessions.
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transects, and that were ≥ 2 km in length, allowing four 
500 m nested transects to be identified. For each session, we 
then considered captures from single-occasion transects and 
only the first occasion of multi-occasion transects, restricting  
captures to those on nested transects.

CAPWIRE models were fit independently for each session 
with the R package ‘capwire’ (Pennell et al. 2013, < www.r-
project.org >). CAPWIRE assume either that all individuals 
have equal p (equal capture model; ECM) or that two cap-
ture classes exist (two-innate rates model; TIRM) represent-
ing individuals with relatively low and high p (Miller et al. 
2005). For each species, we fit single-occasion formula-
tions of the ECM and TIRM for each session, and com-
pared model fit using a likelihood-ratio test implemented 
in ‘capwire’ with 1000 simulations; the ECM was rejected 
when p < 0.1. We generated 95% confidence intervals for 
the estimate of the TIRM using 1000 parametric bootstraps 
(Miller et al. 2005, Pennell et al. 2013).

Initial CAPWIRE abundance estimates for both species 
were generally lower across sessions than N̂  from multi-ses-
sion models. To determine if CAPWIRE produced estimates 
more comparable to the multi-session models with a more 
complete dataset, we conducted a post-hoc analysis in which 
we increased the number of captures included in the analysis by 
including captures from all occasions and dividing the number 
of captures by the number of occasions to standardize effort 
(multi-occasion formulation); models were fit following the 
same procedures as for the single-occasion formulation.

Results

Sampling and genetic identification

We surveyed multi-occasions transects 3–5 times per ses-
sion (Table 1, Fig. 1). Survey effort totaled 720 km in winter 
2013, 570 km in summer 2013 and 870 km in winter 2014 

for both species. In summer 2014, survey effort was 720 km 
for foxes and 570 km for coyotes (Fig. 1). We collected 3752 
scats, had high species identification success (87.3%), and 
identified 810 fox and 2374 coyote scats. We identified 109 
unique foxes (60% male), with 36–50 individuals captured 
per session and 37 captured in ≥ 2 sessions. We identified 
302 unique coyotes (53% male), with 128–151 individuals 
captured per session and 140 captured in ≥ 2 sessions.

Power analyses indicated four occasions in winter 2013 
achieved a CV > 10% for foxes. Observed p increased as 
snow melted (Table 1); nearly all snow had melted by the 
fourth occasion and we assumed that p of a fifth occasion 
would have been comparable to the fourth, so we set them 
equal while assessing power with five occasions. Five winter 
occasions produced a CV = 6.5%. Power analyses indicated 
three summer occasions failed to achieve desired precision. 
We again assumed the p of a final occasion would be com-
parable to that observed during the subsequent occasion 
and set them equal. Four occasions in summer produced a 
CV = 9.7%. Consequently, we increased sampling in 2014 
to five winter and four summer occasions (Table 1, Fig. 1). 
For coyotes, power analyses indicated our initial sampling 
design was sufficient, with four winter occasions produc-
ing a CV = 7.7% and three summer occasions producing 
a CV = 6.5%. We elected to sample coyotes for the same 
number of occasions as foxes in winter 2014 but stopped 
sampling suspected coyote scats after three occasions in 
summer 2014 to reduce costs (Table 1, Fig. 1).

Robust design non-spatial capture–recapture analysis

Program CLOSETEST supported closure for foxes in 2013 
(winter: χ2 = 3.43, df = 3, p = 0.329; summer: χ2 = 1.19, 
df = 2, p = 0.550), but not 2014 (winter: χ2 = 17.08, df = 4, 
p = 0.002; summer: χ2 = 8.38, df = 3, p = 0.006). Component 
and subcomponent tests suggested closure violations may 
have resulted from losses following the second occasion in 

Table 1. Model-averaged estimates of capture probability (p) and unconditional standard error (SE) produced by program MARK by sex for 
kit foxes Vulpes macrotis and coyotes Canis latrans surveyed with noninvasive genetic fecal sampling over two winter (W) and two summer 
(S) sessions in western Utah, USA, 2013–2014. Behavioral response was not expected with noninvasive sampling and thus recapture prob-
ability (c) was modeled as p = c.

Sessiona Occasionb

Kit fox Coyote

Male Female Male Female

p SE p SE p SE p SE

W 2013 1 0.207 0.068 0.207 0.069 0.321 0.055 0.332 0.054
2 0.236 0.064 0.236 0.065 0.271 0.046 0.281 0.049
3 0.414 0.074 0.414 0.075 0.277 0.045 0.288 0.049
4 0.536 0.093 0.536 0.094 0.330 0.055 0.340 0.054

S 2013 1 0.432 0.094 0.431 0.095 0.426 0.056 0.411 0.055
2 0.369 0.072 0.368 0.074 0.400 0.058 0.386 0.068
3 0.322 0.081 0.321 0.083 0.269 0.044 0.258 0.049

W 2014 1 0.489 0.074 0.489 0.074 0.541 0.045 0.543 0.045
2 0.413 0.057 0.413 0.057 0.455 0.040 0.457 0.040
3 0.373 0.084 0.373 0.084 0.378 0.041 0.380 0.040
4 0.259 0.048 0.259 0.048 0.265 0.038 0.267 0.038
5 0.186 0.053 0.186 0.053 0.221 0.034 0.223 0.034

S 2014 1 0.276 0.088 0.272 0.087 0.405 0.045 0.406 0.045
2 0.368 0.099 0.363 0.097 0.432 0.040 0.433 0.040
3 0.415 0.088 0.409 0.087 0.466 0.047 0.467 0.047
4 0.408 0.096 0.403 0.095

aSessions represent primary sampling periods within a robust design.
bOccasions represent secondary sampling periods within a robust design.
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both 2014 sessions. For coyotes, CLOSETEST supported 
closure in 2013 (winter: χ2 = 1.16, df = 4, p = 0.884; summer: 
χ2 = 3.69, df = 2, p = 0.158), but not 2014 (winter: χ2 = 35.97, 
df = 6, p < 0.001; summer: χ2 = 15.33, df = 2, p < 0.001). 
Component and subcomponent tests suggested closure may 
have been violated by additions and losses in winter, and 
additions in summer.

We compared the fit of 31 non-spatial models for fox 
and coyote S (Supplementary material Appendix 2); we also 
evaluated five models for fox S including an index of coy-
ote activity (Supplementary material Appendix 2). When fit 
with each combination of the six detection and three move-
ment models (Supplementary material Appendix 2), each 
survival model was represented 18 times in initial model sets. 
We excluded models for which S or p were confounded, or 
where boundary effects resulted in estimates of S or p fixed 
at 1 (SE = 0).

For both species, multiple models among the most 
supported shared similar structures for S but differed in struc-
ture for p and movement (Supplementary material Appendix 
3, 4). Model-averaged estimates of fox p were similar between 
sexes (Table 1) and the best-fit models suggested a trend in 
p within sessions (Supplementary material Appendix 3). We 
observed only slight differences in p between male and female 
coyotes (Table 1) and top models supported time or trend 
variation in p (Supplementary material Appendix 4).

Model-averaged N̂  from Huggins models suggested that 
there were 2.7–3.6 times more coyotes than foxes (Fig. 2). 
Fox N̂  ranged from 60.1 to 73.2, whereas coyote N̂  ranged 
from 198.1 to 230.7. Confidence intervals (95%) suggested 
that abundance of both species was relatively stable over the 
four sessions and that estimates were comparable to those 
derived from SECR models (Fig. 2).

Single-occasion formulation CAPWIRE analysis

We included captures from 103 transects of equal effort 
for CAPWIRE analyses resulting in 206 km of surveys 
per session. We identified 21–30 foxes and 72–103 coy-
otes across sessions. We detected a greater proportion of 
the MNKA for coyotes (56.3–71.6%) than foxes (55.3–
62.5%), within each session. We failed to detect a greater 
proportion of the MNKA due to the reduction in occasions 
(foxes = 27.8–36.8%; coyotes = 11.3–34.4%), than due to 
decreased transect length from identifying nested transects 
(foxes = 7.5–13.9%; coyotes = 10.2–17%). The number of 
captures per individual was similar between species (range: 
foxes = 1.6–2.3; coyotes = 1.8–2.3).

For foxes, likelihood-ratio tests rejected the ECM for 
2013 sessions (both p < 0.03), but not for 2014 sessions 
(both p > 0.1). Because likelihood ratio tests may fail to 
reject the ECM when sample sizes are small and/or capture 
heterogeneity is present (Miller et al. 2005), we report results 
under the TIRM, but include ECM point estimates when 
it was supported (Fig. 2). Likelihood-ratio tests for coyote 
models rejected the ECM across sessions (all p < 0.001).

Fox N̂  ranged from 30 to 53 (Fig. 2), were substantially 
lower (27.5–59.2%) than those from Huggins and SECR 
models (Lonsinger  et  al. 2018), and were lower than the 
MNKA in three sessions. Generally, fox CAPWIRE esti-
mates had higher precision than alternative approaches, and 
95% confidence intervals failed to overlap multi-session 
point estimates in all but one session (Fig. 2). For coyotes, 
N̂  from single-occasion CAPWIRE models were generally 
lower (13.7–49.0%) than multi-session estimates (Fig. 2); 
winter 2014 CAPWIRE N̂  was more similar to multi-
session estimates.
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Figure 2. Estimated abundances and 95% confidence intervals for kit foxes Vulpes macrotis and coyotes Canis latrans in western Utah over 
four sessions, 2013–2014, resulting from robust design non-spatial Huggins closed-capture models (R) and two-innate rates capture with 
replacement models under single-occasion (CS) and multi-occasion (CM) formulations. Open circles represent capture with replacement 
point estimates under an equal capture model, where likelihood ratio tests failed to reject equal capture. The dashed horizontal line indicates 
the number of unique individuals identified within each session based on nuclear DNA. Results were plotted along with previously pub-
lished multi-session spatially explicit capture–recapture model (S) estimates (Lonsinger et al. 2018).
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Multi-occasion formulation CAPWIRE analysis

We included captures from 103 transects, but effort varied 
for the multi-occasion formulation from 378 to 550 km sur-
veyed, reflecting variation in number of occasions per ses-
sion (Fig. 1). Multi-occasion CAPWIRE surveys identified 
≥ 86% of known foxes and ≥83% of known coyotes within 
each session. The number of captures per individual was 
higher for multi-occasion sampling (range: foxes = 1.9–2.4, 
coyotes = 1.8–3.1).

For both species, likelihood-ratio tests rejected the ECM 
across sessions (foxes: all p < 0.02; coyotes: all p < 0.001). 
Fox multi-occasion CAPWIRE point estimates were lower 
than multi-session estimates (except winter 2014), but con-
fidence intervals overlapped considerably (Fig. 2). The rela-
tionship between multi-occasion CAPWIRE estimates and 
multi-session estimators was more variable for coyotes than 
foxes (Fig. 2).

Discussion

Many carnivores use linear features for movements and 
noninvasive surveys along roads or trails are commonly used 
to monitor carnivores (Kohn  et  al. 1999, Dempsey  et  al. 
2015). Sampling linear features may bias estimates (i.e. 
convenience sampling; Anderson 2001). We attempted to 
avoid the pitfalls of convenience sampling at broad scales 
by randomly selecting sites, and then delineating transects 
within sites. Due to the high mobility of canids relative to 
the size of sites, it is unlikely that individuals occupying a 
site would fail to encounter a transect. In California, foxes 
did not avoid roads and deposited scats equally along and 
away from roads (Cypher et al. 2009), and coyote defeca-
tion along linear features was not influenced by sex, age, or 
social status (Kohn et al. 1999). Still, individual variation 
in road use or proximity of an animal’s activity center to 
transects may influence p (Otis  et  al. 1978, Borchers and 
Efford 2008). We therefore considered individual covari-
ates (e.g. sex) and compared our results to those derived 
from SECR models that account for variation in proximity 
(Lonsinger et al. 2018).

Efforts to maximize p and sample size can further mini-
mize the influence of unaccounted for individual heteroge-
neity (Carothers 1973, White  et  al. 1982, Kendall 1999, 
Lukacs and Burnham 2005). For canids, surveys along linear 
features may yield larger sample sizes than those away from 
linear features with equal intensity (Güthlin et al. 2012). At 
Dugway, scat surveys produced higher detection rates for 
foxes than live-capture (Dempsey et al. 2015). Searcher abil-
ity to detect scats may vary by road substrate (Kluever et al. 
2015), but it is likely higher along linear features than in 
vegetative cover. Transects along linear features may also be 
easier to access and can be surveyed more quickly, increasing 
survey effort given available resources.

Capture–recapture models assume that individuals are 
identified correctly (Otis et al. 1978, White et al. 1982) and 
genotyping errors can be a problem when employing nonin-
vasive genetic sampling to estimate abundance (Mills et al. 
2000, Lukacs  et  al. 2009). Genotyping error rates in our 

dataset were low (Lonsinger et al. 2018). Petit and Valiere 
(2006) found that error rates similar to ours had minimal 
effects on N̂  (i.e. bias ≤2.5%). For most individuals, con-
sensus genotypes were achieved at more loci than required 
to discriminate among siblings (Lonsinger et al. 2018), and 
we believe this, combined with efforts to minimize errors, 
effectively eliminated misidentification.

True abundances were unknown for our target popula-
tions and we cannot explicitly infer bias for each estimator. 
Our abundance estimates from Huggins models showed a 
high level of agreement with multi-session SECR estimates 
(Lonsinger et al. 2018). In general, our Huggins estimates 
were slightly (but not significantly) lower than SECR esti-
mates (with one exception, fox winter 2013). Blanc  et  al. 
(2013) found SECR models tended to overestimate abun-
dance for small populations but produced estimates closer 
to the true abundance for larger populations (defined as 
n = 50). Individual heterogeneity in capture, if unaccounted 
for, can bias N̂  downward (Otis et al. 1978, White et al. 
1982). SECR models address variation resulting from an 
individual’s proximity to survey sites, a form of heteroge-
neity unaccounted for in non-spatial models (Borchers and 
Efford 2008). Our MNKA and abundance estimates sug-
gested that our target populations were >50 individuals, and 
thus, N̂  from non-spatial models may be biased low due to 
the result of unaccounted for capture heterogeneity.

Our Huggins estimates differed from SECR estimates to 
a greater degree for coyotes than foxes, and this may relate 
to the proportion of individuals on the periphery of the 
survey area (Blanc  et  al. 2013). Our sampling design was 
motivated primarily by fox monitoring and was centered 
on the low-lying basin. Consequently, the study area was 
bounded by mountains (north, east and south) and salt des-
ert playa inhospitable to both species in the west. The study 
boundaries were more likely to bisect the home ranges of 
coyotes than foxes, and this may have resulted in the greater 
disparity between non-spatial and spatial estimates for coy-
otes. While both Huggins and SECR models assume popu-
lation closure (Otis et al. 1978, Efford 2011), SECR relaxes 
the assumption by considering an animal’s activity center. 
Population losses or gains that violate closure assumptions 
can negatively or positively bias estimates, respectively 
(Kendall 1999). For foxes, closure tests suggested popula-
tion losses in 2014 sessions following the second occasion. 
While losses could have resulted from changing behaviours 
(e.g. denning in summer, or dispersal initiation in sum-
mer), our 2013 sessions included the same relative period 
(i.e. beyond two occasions) and we did not find evidence 
of similar potential closure violations. Closure test results 
should be viewed with caution, as they assume no individual 
heterogeneity in p and closure is often rejected in closed 
populations when heterogeneity exists (Stanley and Burnham 
1999). Furthermore, we observed a similar magnitude in the 
differences between N̂  from Huggins and SECR models 
in 2013 and 2014 for foxes. These patterns, combined with 
knowledge that concurrent research of telemetered foxes 
did not detect any movements beyond our study extent 
(EMG), lead us to believe the fox population was effectively 
closed. For coyotes, closure tests again supported closure in 
2013, but not 2014. Although the temporal sampling frame 
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increased in winter from 2013 to 2014, winter 2014 closure 
violations were detected within the time frame that aligned 
with 2013 sampling. Summer temporal sampling was equiv-
alent for coyotes across years. Consequently, we suspect 
individual heterogeneity in p likely influenced closure test 
results.

Non-spatial Huggins models do not account for ‘holes’ 
in the sampling frame (Efford and Fewster 2013), and this 
may also contribute to the lower N̂  resulting from Huggins 
models. Our broad-scale random sampling resulted in several 
holes within our sampling frame (Lonsinger  et  al. 2018), 
from which animals likely had low (or possibly zero) p due 
to their distance from transects. By accounting for proximity 
to animal activity centers, SECR models effectively handle 
holes (Borchers and Efford 2008).

Multi-session Huggins and SECR models produced 
relatively consistent results, and we used these as a standard 
to evaluate the performance of CAPWIRE. The MNKA 
nearly always underestimates abundance (Mills et al. 2000), 
and therefore we regarded N̂  at or below the MNKA as 
biased. In practice, funding constraints may force manag-
ers to seek cost-efficient sampling strategies. Consequently, 
there has been considerable interest in single-occasion 
methods, which have practical advantages (e.g. ease of imple-
mentation, cost; Miller et al. 2005, Petit and Valiere 2006,  
Williams et al. 2009). Reliable N̂  have been reported for 
a range of taxa using CAPWIRE (Petit and Valiere 2006, 
Puechmaille and Petit 2007, Stenglein  et  al. 2010b), but 
in some cases, CAPWIRE estimates do not align with 
alternative estimates (Williams et al. 2009, Stansbury et al. 
2014). Simulations have suggested that single-occasion sam-
pling can produce reliable abundance estimates when the 
number captures per individual is >1.7 (Miller et al. 2005, 
Petit and Valiere 2006, Stenglein et al. 2010b). Our captures 
per individual were >1.7 for both species across sessions, with 
one exception (fox winter 2014 = 1.6). Still, single-occasion 
CAPWIRE estimates were substantially lower than multi-
session estimates for both species across sessions. For foxes, 
single-occasion estimates fell below the MNKA for three of 
four sessions; all were below the MNKA when employing 
the ECM when it was supported (Fig. 2). A similar pattern 
was observed for coyotes, though only one estimate was less 
than the MNKA.

CAPWIRE assumes independence among captures and 
equal effort (Miller  et  al. 2005). Independence among 
captures may be violated when individuals are captured 
> 1 time within a site. Restricting recaptures to spatially 
disparate sites can minimize this concern (Stenglein  et  al. 
2010b), but reduces already limited datasets for difficult to 
capture species and will likely result in fewer captures per 
individual (Stansbury et al. 2014). CAPWIRE is robust to 
violations of independence among captures (Miller  et  al. 
2005), and consequently, many researchers have opted to 
include all captures (Williams et al. 2009, Stansbury et al. 
2014) as we have.

CAPWIRE is based on an urn model (Miller  et  al. 
2005) and may best apply to sampling conditions that 
mimic this, such as sampling congregation areas (e.g. 
colonies). Our sampling was dispersed and temporal 
variation in space-use may have limited the number of 
individuals available for capture during a single occasion, 

biasing CAPWIRE estimates (Kendall 1999). Ensuring 
that >1 single-occasion transect is within each poten-
tial home range may alleviate this concern, but may be 
impractical or restrict the spatial extent of surveys. Alter-
natively, combining the results from multiple occasions 
(i.e. a multi-occasion formulation), while accounting for 
variable effort to meet model assumptions, may increase 
the probability of capturing individuals with temporal 
variation in space-use. Indeed, a post-hoc multi-occasion 
CAPWIRE analyses for both species increased the indi-
viduals captured ≥1× and produced results that were more 
similar to multi-session estimates.

The CAPWIRE model estimates a ratio α, between the 
probabilities of capture for ‘seldom’ and ‘often’ captured 
individuals. Outlier individuals captured many more times 
than the mean inflate p of the ‘often’ class and can severely bias 
results and artificially increase precision (Miller et al. 2005, 
Stansbury  et  al. 2014). For example, the coyote summer 
2014 multi-occasion CAPWIRE estimate was significantly 
lower than those of multi-session estimators and had high 
precision (Fig. 2). The capture history contained two outlier 
individuals captured ≥19 times. Removing these outliers 
increased the population estimate, decreased precision and 
resulted in confidence interval overlap with of multi-session 
confidence intervals (results not shown).

Management implications

Carnivores are notoriously difficult to monitor (Gese 2001), 
and this is a primary challenge for estimating abundance 
and trends. Employing noninvasive genetic sampling 
can alleviate some of these challenges (Kohn  et  al. 1999, 
Petit and Valiere 2006, Piaggio  et  al. 2016) and facilitate 
concurrent monitoring of multiple species at broad scales 
(Williams et al. 2009). CAPWIRE was developed to com-
pliment noninvasive genetic sampling and may further 
reduce costs by generating abundance estimates from a 
single sampling event. When a single-occasion sampling 
was used, CAPWIRE performed poorly: estimates were 
biased low with high precision. Our dispersed sampling 
design and the spatial ecology of canids (e.g. territoriality) 
both likely contributed to our failure to capture a sufficient 
portion of the population with a single sampling event. 
Early comparisons of CAPWIRE to real data ignored tem-
poral sampling information (i.e. data were simplified to 
‘the total number of times each individual was caught in 
the study;’ Miller  et  al. 2005). Thus, these data may not 
accurately reflect results under a single sampling occasion 
design, despite the appeal of CAPWIRE for this purpose. 
Our results demonstrated that choice of estimator and 
sampling design significantly influenced resulting estimates, 
the relationship between estimators varied between species, 
and that despite perceived benefits, CAPWIRE may not be 
appropriate for all scenarios.
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