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Bryophytes have a long history in Europe, with fossils dat-
ing to the Miocene, about 23 million years ago (Frahm 
2004, Hedenäs and Bennike 2008, Lewis et al. 2008), 
resembling extant species. This suggests that some Euro-
pean species were exposed to multiple glacial cycles during 
the Quaternary. The extent of the northern European ice 
sheet fluctuated greatly during the Pleistocene, and the last 
glacial maximum (LGM, ~20 000 year BP) was particu-
larly severe with the Weichselian ice sheet covering most 
of Fennoscandia and extending into mainland Europe 
and the British Isles (Svendsen et al. 2004). The Mediter-(Svendsen et al. 2004). The Mediter-. The Mediter-
ranean region (Taberlet et al. 1998) together with Asia 
Minor (Ansell et al. 2011) and central Europe (Provan 
and Bennett 2008) are recognized as refugia for a range of 
species during this period, acting as large-scale sources for 
recolonization of glaciated areas after the LGM.

An unknown fraction of extant species in northern are-
as may have survived glaciated periods within or at the pe-
riphery of the Weichselian ice sheet (in situ survival, Dahl 
1998). Even though extreme environmental conditions 
in glaciated areas make this seem unlikely, species able to 
survive in small populations may have existed in favour-

able microrefugia within the ice sheet (Holderegger and 
Thiel-Egenter 2009, Rull 2009). Recent studies support 
glacial survival of both arctic angiosperms (Westergaard 
et al. 2011) and conifers (Parducci et al. 2012) in Scandi- and conifers (Parducci et al. 2012) in Scandi-(Parducci et al. 2012) in Scandi- in Scandi-
navia during the LGM. Moreover, based on radiocarbon 
dating, Kullman (2008) concluded that Betula trees grew 
on Andøya in northern Norway approximately 17 000 
year BP. These findings support the in situ survival theory, 
long considered to be of minor relevance for explaining 
contemporary diversity in Scandinavia (but see Birks et al. 
2012). The in situ glacial survival hypothesis has been dis-. The in situ glacial survival hypothesis has been dis-
favoured because of little fossil evidence from areas within 
the ice sheet (Birks 1994, Paus et al. 2011), and molecular 
studies have found patterns compatible with post-glacial 
colonization for many species (Taberlet et al. 1998, Alsos 
et al. 2007). Molecular studies often depend on probabili-. Molecular studies often depend on probabili-
ties of glacial survival based on observed patterns of ge-
netic structure, with low levels of differentiation between 
separated populations (measured by FST) indicating post-
glacial colonization. Low divergence between populations 
within and outside the ice sheet areas does not necessarily 
imply recent divergence, though, since this could also be 
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caused by large ancestral sizes or recent gene flow (Nielsen 
and Beaumont 2009). Alternatively, high FST could in-
stead of long-time survival result from little genetic vari-
ation within versus among populations (Stenøien et al. 
2011a, Kyrkjeeide et al. 2012). 

Populations of limited sizes often contain reduced 
adaptive variability and accumulated detrimental alleles, 
and organisms will have different capacities of surviving 
such conditions (Bhagwat and Willis 2008). Specifically, 
species with low genetic load and vegetative growth may 
have a high capacity to survive in small, stable microre-
fugia over time (Mosblech et al. 2011). Species able to 
survive in scattered microrefugia might also have been 
able to expand rapidly into glaciated areas when the ice 
retreated. Indeed, species surviving the LGM in central 
Europe are typically asexuals and generalists with small, 
wind-dispersed seeds, while species restricted to climati-
cally more favourable southern refugia usually reproduce 
sexually, are often specialists, and produce large seeds 
(Bhagwat and Willis 2008). 

If vascular plants survived in northern areas during 
the LGM (Westergaard et al. 2011, Parducci et al. 2012, 
Vorren et al. 2013), other plants should also have been 
able to survive the extreme environments in the north (cf. 
Stenøien et al. 2011a, b, Kyrkjeeide et al. 2012, Vorren 
et al. 2013). Bryophytes exhibit traits that might make 
them better suited than vascular plants for survival in 
small, northern refugia, including their poikilohydric 
nature, enabling survival through unfavourable periods 
(Proctor et al. 2007; see also Segreto et al. 2010). Further-. Further-
more, asexual reproduction is widespread in bryophytes 
(Frey and Kürschner 2011) and haploidy might enable 
efficient purging of genetic load, even though inbreeding 
depression is also expressed during the diploid sporophyte 
stage (Taylor et al. 2007). Bryophytes have combined or 
separated sexes (monoicy and dioicy, respectively), and 
fertilization is limited by dispersal as spermatozoids must 
move through water. This may lead to low rates of sexual 
reproduction in dioicous species and possibly high levels 
of inbreeding in monoicous species (McDaniel and Per-(McDaniel and Per-
roud 2012). Inbreeding depression is expected to be low 
in plants where selfing is the dominant mating system 
(Lande and Schemske 1985), as demonstrated in a study 
using a moss model system (Taylor et al. 2007). Also, 
there are examples of bryophyte populations primarily 
established and maintained through vegetative diaspores 
(Pfeiffer et al. 2006), implying that bryophyte populations 
may be stable and expanding despite low levels of sexual 
reproduction. 

The spatial distribution of wind-dispersed organisms 
depends mainly on the size of propagules, and it has been 
suggested that microbes being ~20 μm or less should ef-
ficiently spread worldwide in a short time (Wilkinson et 
al. 2012). Bryophyte spore sizes typically range from 7 to 
100 µm (Frahm 2008) and they may easily be dispersed 
by wind (van Zanten and Pocs 1982, Muñoz et al. 2004). 

Sundberg (2012) trapped peat moss spores across a large 
spatial scale and concluded that a major fraction of spores 
are dispersed regionally in boreal areas, but as much as 
1% of the spore rain may have intercontinental origin. 
Wide distribution ranges in bryophytes suggest that they 
in general are exceptional dispersers (Szövenyi et al. 2008, 
Stenøien et al. 2011a). For instance, about 70% of moss 
species occurring in Europe are also present in North 
America (Frahm and Vitt 1993), while less than 7% of 
European vascular plant species are shared with North 
America (Qian 1999). There are few bryophyte endemics 
on various geographical levels, even on relatively small ar-
chipelagos, exemplified by only 1.5% of bryophyte species 
on the Canary Islands being endemic compared to 40% of 
angiosperms (Vanderpoorten et al. 2010). 

Here we review phylogeographical studies of bryo-
phytes based on molecular marker information, and our 
aim is twofold. First, we want to review the bryophyte 
history in Europe after the last ice age and summarize 
insights concerning likely glacial refugia for bryophytes, 
identify major post-glacial colonization routes, and dis-
cuss the probability of glacial survival within the ice sheet. 
Second, we will, based on meta-analyses of published re-
sults, test if life history traits (i.e. mating systems, spore 
production and/or spore sizes), are associated with differ-
ent geographical regions, range size and genetic structure 
of European bryophytes.

Material and meta-analyses

Altogether, 26 phylogeographical studies of 31 bryophytes 
published over the last 13 years were summarized to review 
the colonization history of bryophytes in Europe after the 
last glaciation. All papers and species mentioned in the 
text and included in meta-analyses are listed in Table 1.

We tested if life-history traits (frequency of sporophyte 
production and spore size) are associated with presence in 
different regions of Europe, range size (i.e. number of Eu-
ropean regions a species is found in) and genetic structur-
ing. The number of bryophyte biogeographical regions of 
Europe varies between authors, but we follow Mateo et al. 
(2013), and recognise their Alpine, Atlantic and Boreal el-
ements, while merging the Mediterranean–Macaronesian 
and Continental elements. Altogether we distinguish four 
regions; the arctic, western, boreal and southern regions, 
and these regions were used to describe the range sizes of 
the reviewed species (Table 1). Spore size was estimated as 
mean spore diameter taken from the minimum and maxi-
mum spore diameter (references in Table 1). Two catego-
ries of frequency of sporophyte production were included 
in the analysis: rare (rare to occasional) and frequent (fre-
quent to abundant, Table 1). For species whose reproduc-
tion varies from rare to frequent between geographical ar-
eas, sporophyte production was set to be frequent. Mating 
system was not included in the analysis since the majority 
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of species in this dataset are dioicous. Genetic divergence 
among populations measured by the fixation indexes FST 
(Weir and Cockerham 1984) and GST (Nei 1973), here-(Nei 1973), here-, here-
after collectively called FST, was used to describe genetic 
structure. Whenever FST was measured twice (e.g. for dif-
ferent geographical scales or molecular markers), the mean 
value was used. In all analyses, the FST values were log 
transformed to obtain normal distribution of the data. χ2-
tests and one-way ANOVA were performed to test if there 
were any associations between range sizes and life-history 
traits, and FST, respectively (Supplementary material Ap-
pendix 1). Furthermore, an analysis of covariance (AN-
COVA) was used to test the relationship between range 
size and spore sizes and frequency of sporophyte produc-
tion. Finally, we tested whether FST is associated with spore 
size and frequency of sporophyte production using linear 
regression and Welch t-test, respectively. Analyses were 
also performed at the genus level due to similar life-history 
traits within genera (see Supplementary material Appen-
dix 1 for results of analyses of phylogenetic constraints). 
Analyses were performed in the R environment.

Results

Refugia and postglacial colonization routes in 
Europe

Here we present a short overview of the southern, west-
ern, boreal and arctic floristic elements of Europe, give 
examples of species likely surviving the LGM in different 
regions, and also present likely post-glacial colonization 
routes (Fig. 1). Life-history traits and range sizes for all 
species considered are listed in Table 1. Table 2 gives an 
overview of different historical scenarios and how genetic 
patterns may indicate different scenarios.

The southern element
The Mediterranean area is characterized by warm, dry 
summers and mild, wet winters, leading to a high fraction 
of the bryophyte flora being winter ephemerals (Frahm 
2010), and the majority of species being acrocarpous 
(Størmer 1983). In the mountain areas, the species com-. In the mountain areas, the species com-
position largely overlaps with that found in more central 
parts of Europe (Frahm 2010). The Mediterranean is not 
a worldwide hot-spot of species diversity for bryophytes 
as it is for vascular plants and vertebrates, probably due to 
the arid climate (Goffinet and Shaw 2009). 

Southern populations of Pleurochaete squarrosa (Brid.) 
Lindb. are more variable than northern populations 
(Grundmann et al. 2007, 2008), a pattern resembling that 
of several southern European vascular plants (Taberlet et 
al. 1998). Pleurochaete squarrosa seems to have survived in 
the Mediterranean Basin and later colonized northwards Ta
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from both the Iberian Peninsula and the Balkans, hence a 
contact zone is recognized in central Europe (Grundma-(Grundma-
nn et al. 2007, 2008). Also, Leucodon sciuroides (Hedw.) 
Schwaegr. (Cronberg 2000, Stech et al. 2011) has higher 
genetic diversity in southern versus northern populations. 

Homalothecium sericeum (Hedw.) Schimp. also shows 
high genetic variation in the Mediterranean region, but 
high levels of unique haplotypes on the British Isles and 
adjacent mainland, indicate that this species may also have 
had a western refugium during the LGM (Hedderson and 
Nowell 2006). The authors estimate divergence between 
British Isles and mainland populations to have occurred 
0.45 Myr ago (i.e. long before the LGM). Désamoré et 
al. (2012) found northern refugia the most likely origin 
of the northern European colonization. Haplotype groups 
restricted to southwestern genetic clusters are also found 
in Kindbergia praelonga (Hedw.) Ochyra, suggesting 
southern survival, whereas the most widespread haplo-
type group probably survived in other, larger refugia and 
colonized all of Europe after the LGM (Hedenäs 2010a). 
Antitrichia curtipendula (Hedw.) Brid. has one widespread 
haplotype group throughout the distribution range, mak-
ing refugia hard to localize, while another haplotype group 
is more restricted to western Europe, indicating that it 

colonized fewer available areas after the LGM (Hedenäs 
2008a).

Hutsemékers et al. (2011) compared genetic variation 
of island and mainland populations of the southern tem-
perate moss Platyhypnidium riparioides (Hedw.) Dixon us-
ing Macaronesian, southwestern European, and north Af-
rican populations to test if islands can act as source rather 
than sink to mainland. The authors found no indication of 
bottlenecks in the island population and argued that these 
archipelagos might have been important in post-glacial 
colonization of Europe. Also, no monophyletic haplotype 
groups were observed within Macaronesia in the temperate 
Grimmia montana Bruch & Schimp., most likely due to 
transatlantic gene flow (Vanderpoorten et al. 2008). The 
authors found that the root of their inferred haplotype 
network was close to haplotypes residing in south-western 
Europe and the Canary Islands, and, hypothesised that the 
species could have survived the LGM there.

The western element
The western element is found along the Atlantic coast, 
containing so-called atlantic vascular plants and oceanic 
bryophytes. The distribution of atlantic vascular plants 

Figure 1. Hypothesized colonization routes, contact zones, and possible in situ glacial refugia of bryophyte species in Europe during 
and after the last glacial maximum. Three main colonization routes, western, southern, and eastern, are indicated by green, blue and 
red arrows, respectively. Solid yellow fields indicate potential in situ refugia during the LGM.
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correlates mostly with winter temperatures, while oceanic 
bryophytes are mainly constrained by amount and fre-
quency of rainfall (Dahl 1998). Consequently, the highest 
bryophyte species richness of the western element occur 
in areas with frequent precipitation, i.e. the British Isles 
and southwestern Scandinavia (Dahl 1998), areas mostly 
covered by ice during the LGM. There are many species 
confined to the northwestern Atlantic coast of Europe and 
there are even a few endemic species in this area, such as 
the liverwort Lepidozia pearsonii Spruce and the mosses 
Anoectangium warburgii Crundw. & M.O. Hill and Weis-
sia perssonii Kindb. (Dahl 1998). Some of the oceanic spe-(Dahl 1998). Some of the oceanic spe-. Some of the oceanic spe-
cies found in Europe have disjunct occurrences along the 

western coast of North America and the Himalayas, but 
lack specialized vegetative diaspores and do not reproduce 
sexually (Damsholt 2002), making recent long distance 
dispersal less likely. The oceanic species may have escaped 
harsh climate during the last glaciation by surviving in ice-
free areas between the British Isles and the mainland now 
situated below current sea level (Frahm 2012). This sce-(Frahm 2012). This sce-. This sce-
nario has also been suggested as an explanation of the pres-
ence of unique AFLP markers in the British populations 
of the temperate herb Meconopsis cambrica Vig (Valtueña 
et al. 2012).

The endemic allopolyploid Sphagnum troendelagi-
cum Flatberg known from coastal central Norway, has a 

Table 2. Overview of possible historical scenarios, genetic signatures that may be caused under these scenarios and alternative explana- Overview of possible historical scenarios, genetic signatures that may be caused under these scenarios and alternative explana-
tions for the patterns observed. Each pattern is exemplified by a bryophyte species included in the present review.

Historical scenario Genetic signature Alternative explanation

Refugial area

Relatively high genetic variation in an area 
compared to other studied areas (Hewitt 2004)
e.g. Pleurochaete squarrosa
(Grundmann et al. 2007)

Rapid population growth maintaining 
polymorphisms in an area despite recent 
colonization (Waxman 2012) and/or the area 
being a post-glacial contact zone (Provan and 
Bennett 2008)

High level of unique alleles and haplotypes (Ehrich 
et al. 2008)
e.g. Homalothecium sericeum
(Hedderson and Nowell 2006)

Admixture in contact zone leading to unique 
haplotypes (Hassel et al. 2005)

Root of gene trees or haplotype network close to 
haplotypes found in an area
e.g. Grimmia montana
(Vanderpoorten et al. 2008)

   Several refugial areas

Long time since divergence between genetic 
lineages found in two or more areas
e.g. Homalothecium sericeum
(Hedderson and Nowell 2006)

Estimated mutation rate used to date divergence 
times may be too high, thereby giving the false 
impression of ancient divergence (discussed in 
Stenøien et al. 2011a)

Colonized area

Relatively low genetic variation in a given area 
compared to one or more other studied areas 
(Hewitt 2004)
e.g. Leucodon sciuroides
(Cronberg 2000, Stech et al. 2011)

Genetic swamping, i.e. colonizing individuals 
have removed signals of refugial survivors, either 
due to selective advantages of immigrants or by 
genetic drift

   Contact zone

Relatively high genetic variation due to genetically 
differentiated lineages (Provan and Bennett 2008)
e.g. Pleurochaete squarrosa
(Grundmann et al. 2008)

Refugial area, species originating in this area

Dispersal

   Effective gene flow 
No genetic structure
e.g. Polytrichum commune
(van der Velde and Bijlsma 2003)

Low mutation rate and/or large effective 
population size causing incomplete lineage 
sorting (Stenøien and Såstad 1999)

   Long distance dispersal
Widespread haplotypes
e.g. Radula lindenbergiana
(Laenen et al. 2011)

Low mutation rate and/or large effective 
population size causing incomplete lineage 
sorting (Stenøien and Såstad 1999)
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probable origin before the LGM (Stenøien et al. 2011b). 
This could indicate glacial survival in Scandinavia, but it 
could also mean that the species originated outside the 
ice sheet and colonized Norway after the ice retreated 
(Stenøien et al. 2011b). A similar scenario has been sug-. A similar scenario has been sug-
gested for another amphi-Atlantic peat moss, Sphagnum 
angermanicum Melin, with European populations only 
found in Norway, Sweden and Iceland. Two genetic clus-
ters have been recognized in this species in European and 
North American populations, both occurring on the two 
continents (Stenøien et al. 2011a). One linage may have 
colonized Europe from North America before the LGM 
(~40 000 year BP) and the other after the LGM, and S. 
angermanicum may have survived the LGM in a southern 
cryptic refugium where it later went extinct after coloniz-
ing Scandinavia (Stenøien et al. 2011a). North American 
origin could also be suggested for S. affine Renauld & Car-
dot, as higher genetic variation is found along the eastern 
coast of North America than in Scandinavia (Thingsgaard 
2001). 

The boreal element
The boreal region is dominated by coniferous forest and 
bryophytes composition broadly overlaps with that found 
in central Europe, though the latter is more diverse due to 
warmer climate (Størmer 1983). There are few endemic 
boreal bryophytes in Europe (e.g. the mosses Cynodontium 
suecicum (Arnell & C.E.O. Jensen) I. Hagen and Schistid-
ium bryhnii I. Hagen (Dahl 1998)), and many species are 
circumboreal (Frahm 2012). Most of Russia, except the 
westernmost parts and north-western coast, remained ice-
free during the LGM (Svendsen et al. 2004). Molecular 
studies support the hypothesis of glacial refugia east of the 
ice for several vascular plants (Ehrich et al. 2008, Tollefs-(Ehrich et al. 2008, Tollefs-
rud et al. 2008), implying that the area also was suitable 
for a range of bryophytes during the LGM.

As an example, the boreal peat moss Sphagnum wulfi-
anum Girg. is hypothesised to have colonized Scandinavia 
from the southeast and perhaps also from eastern refugia, 
even though some uncertainty exists due to low genetic 
variation and hence low confidence as to where glacial re-
fugia could have been situated (Kyrkjeeide et al. 2012). 
Small populations of Sphagnum capillifolium (Ehrh.) 
Hedw. seem to have survived the last glaciation in the 
Balkan mountains, but the distinct haplotypes found here 
suggest that this area was not the source for postglacial 
colonization of northern Europe (Natcheva and Cronberg 
2003). Also, one of the European cryptic species of Hama-
tocaulis vernicosus (Mitt.) Hedenäs (Hedenäs and Eldenäs 
2007) may have survived in southern refugia during the 
LGM. Another cryptic species has a more northern distri-
bution and one main haplotype, spread throughout the 
distribution range.

Several refugia have been hypothesized for Sphagnum 
squarrosum Crome, and three genetic clusters are found 

in this species (Szövenyi et al. 2006, 2007). However, the 
clusters are only weakly structured in Europe, possibly due 
to extensive gene flow. Sphagnum fimbriatum Wilson on 
the other hand, is found to be highly structured in one ‘At-
lantic’ and one ‘non-Atlantic’ clade (Szövenyi et al. 2006, 
2007). The Atlantic clade likely survived the LGM along 
the western coast and is currently found from southern 
England to northern Spain, while the non-Atlantic clade 
is widespread in Europe and probably recolonized the 
continent rather rapidly after the LGM. This discrepancy 
between lineage distributions could be explained by the 
widespread clade being able to fill niches becoming availa-
ble after the ice retreated, while the Atlantic clade possibly 
was unable to do the same, and hence became restricted to 
the southwestern coast of Europe (Szövenyi et al. 2007). 

Southwestern refugia have been suggested for bryo-
phytes with wide distribution ranges, i.e. not restricted to 
the western element. van der Velde and Bijlsma (2003) 
studied five Polytrichum species in Europe and found low 
levels of genetic structure in four of them, suggesting that 
gene flow is high enough to prevent genetic differentiation 
between European populations. In contrast, P. juniperi-
num Hedw. may have had a unique evolutionary history, 
with recolonization of Europe occurring from two refugia, 
one being western, possibly in southern parts of the Brit-
ish Isles. Western genetic lineages in both P. juniperinum 
and S. fimbriatum are geographically restricted, indicat-
ing that recolonization of the European mainland from 
western refugia was limited. On the other hand, coloniza-
tion from western refugia does not seem to be limited in 
the liverwort Radula lindenbergiana Gottsche ex Hartm., 
which is found to be more variable in western versus east-
ern Europe, with most diversity found in Macaronesia 
(Laenen et al. 2011). 

Some boreal bryophytes maintain their highest diver-
sity in northern areas. Hedenäs (2009a) found higher 
haplotype variation in Scandinavia versus southern and 
central Europe in Sarmentypnum exannulatum (Shimp.) 
Hedenäs. The lineages found in southern and central Eu-
rope may have survived the LGM there and later colo-
nized northern Europe. However, other lineages found 
in Scandinavia were hypothesised to have survived in 
northern and/or immigrated from northeastern refugia 
(Hedenäs 2009a), a scenario also suggested for Scorpid-
ium cossonii (Schimp.) Hedenäs and S. scorpioides (Hedw.) 
Limpr. (Hedenäs 2009b). The cosmopolitan Sanionia 
uncinata (Hedw.) Loeske also has higher genetic varia-
tion in northern versus southern European populations, 
indicating colonization of northern Europe from several 
refugia, including northeastern ones (Hedenäs 2010b). 
Alternatively, the species may have survived in ice-free ar-
eas in Scandinavia. Furthermore, a global study of S. unci-
nata showed that haplotype diversity was highest in east-
ern Eurasia, indicating more severe bottlenecks in western 
compared to eastern European populations during glacial 
periods (Hedenäs 2012). One haplotype group, found in 
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Africa, western Europe, and southeast Greenland, prob-
ably colonized northern Europe from southern or western 
rather than northeastern glacial refugia. 

The arctic element
The European arctic bryophyte flora belongs to a wider 
circumarctic floristic element spanning the polar part of 
the northern hemisphere and consists of species restricted 
to the arctic (e.g. Sphagnum arcticum Flatberg & Frisvoll), 
but also occurring in some alpine areas further south 
(Steere 1978, e.g. Rhizomnium andrewsianum (Steere) 
T.J. Kop.). One such European endemic is Orthothecium 
lapponicum (Schimp.) C. Hartm. (Dahl 1998), and this 
species may be an ancient relict that survived in large ice-
free areas, potentially Beringia, since the Tertiary (Steere 
1978). Northeast Russia and northwest America re-. Northeast Russia and northwest America re-
mained ice-free during the Pleistocene, and fossil and mo-
lecular data show that this area served as a large refugium 
for arctic vascular plant species (Abbott and Brochmann 
2003). For northern species, long distance dispersal may 
be common, and colonization of the arctic may prima-
rily be limited by establishment opportunities (Alsos et al. 
2007). Few phylogeographic studies of arctic areas have 
included bryophytes, but the four species in the arctic and 
boreal moss genus Cinclidium Sw. are found to have iden-
tical haplotypes throughout large areas, suggesting recent 
dispersal as the main mechanism shaping the circumpolar 
distribution in this genus (Piñeiro et al. 2012). It is pres-(Piñeiro et al. 2012). It is pres-. It is pres-
ently unknown where glacial refugia for these species may 
have been located. Good dispersal ability is also suggested 
for Scorpidium cossonii occurring in the arctic (Hedenäs 
2009b).

In situ glacial survival
Nunataks existing in glaciated areas of Alaska and 
Greenland today hold several species, including lichens, 
bryophytes, vascular plants, and insects (Heusser 1954, 
Gjærevoll and Ryvarden 1977). Nunataks or other ice-
free refugia probably also existed along the coast of Nor-
way and the island Andøya, which were partly ice-free 
during the LGM (Mangerud et al. 2011, Vorren et al. 
2013). 

Although studies of bryophytes have found unique ge-
netic lineages in Scandinavia for some species (e.g. Radula 
lindenbergiana, Sanionia uncinata, Sphagnum angermani-
cum and S. wulfianum) no studies have unequivocally con-
cluded that in situ glacial survival has taken place (Laenen 
et al. 2011, Hedenäs 2012, Kyrkjeeide et al. 2012), even 
though it seems likely (Stenøien et al. 2011a, b). In the 
study of Sanionia uncinata, global sampling was applied 
and one of the haplotype groups recognized occur only in 
Scandinavia and Svalbard (Hedenäs 2012). The haplotype 
group was suggested to have survived in a cryptic northern 
glacial refugium south of the ice sheet, but these results 

do not preclude that S. uncinata could have survived on a 
nunatak somewhere within the ice sheet. 

Meta-analyses

There is no significant association between different Eu-
ropean regions and life-history traits or FST, respectively 
(see Supplementary material Appendix 1for results). The 
interaction between spore size and sporophyte production 
is non-significant, hence, likelihood ratio tests were used 
to find the best model explaining range size (for details 
regarding model test, see results in Supplementary ma-
terial Appendix 1). The most parsimonious model only 
includes spore size as an explanatory variable, and linear 
regression was used to test the relationship between range 
size and spore size. There is a significant effect of spore 
size on range size (DF = 27, MS = 0.99, F = 9.05, p = 
0.006, Fig. 2): species with small spores appear in more 
regions than species with larger spores. On the other hand, 
spore size is not significantly associated with FST between 
populations (DF = 13, MS = 0.46, F = 1.72, p = 0.21). 
FST is found to be significantly higher in species that rarely 
produce sporophytes (mean = 0.36) compared to species 
with frequent spore production (mean = 0.16, t = –2.36, 
DF = 7.43, p = 0.048, Fig. 3, the means are given using 
untransformed FST). The results were not significant at the 
genus level (results in Supplementary Material Appendix 
1), but this may be due to very low sample sizes.

Figure 2. Relationship between the spore size of a bryophyte spe-
cies and the number of European regions in which it occurs. 
Species with small spores occur in more regions than species with 
large spores (R2 = 0.25, F1,27 = 9.05, p = 0.006).
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Discussion 

There seems to be different responses among different 
bryophyte species to climate change after the LGM, with 
several refugia and several post-glacial colonization routes. 
For many bryophyte species, more than one glacial refu-
gial area is suggested, indicating that a species could have 
survived virtually anywhere. For example, Drepanocladus 
aduncus (Hedw.) Warnst. had potential refugia along the 
Atlantic coast, in the Alps, southeastern Europe, east of 
the ice sheet, and Scandinavia (Hedenäs 2008b). Never-(Hedenäs 2008b). Never-. Never-
theless, some general trends are evident, and three main 
colonization routes are recognized (Fig. 1). First, a south-
ern route (blue arrows in Fig. 1) representing bryophyte 
species like Pleurochaete squarrosa (Grundmann et al. 
2007, 2008) and Leucodon sciuroides (Cronberg 2000), 
that likely survived the LGM in southern Europe (Iberian 
peninsula, Italy and the Balkans). Second, high levels of 
genetic variation and unique genetic lineages are found 
along the western coast of Europe for some species, sup-
porting a western route (green arrows in Fig. 1) with refu-
gia in Macaronesia (e.g. Radula lindenbergiana (Laenen et 
al. 2011) and Platyhypnidium riparioides (Hutsemékers et 
al. 2011)), southwestern European mainland (e.g. Grim-
mia montana (Vanderpoorten et al. 2008)), south in the 
British Isles (e.g. Polytrichum juniperinum (van der Velde 
and Bijlsma 2003)), and also North America (e.g. Sphag-
num angermanicum (Stenøien et al. 2011a)). Third, the 
large non-glaciated area east of the Scandinavian ice sheet 
seems to have served as a refugium resulting in an eastern 

route (red arrow in Fig. 1). Sanionia uncinata (Hedenäs 
2012), Sarmentypnum exannulatum (Hedenäs 2009a), 
and Sphagnum wulfianum (Kyrkjeeide et al. 2012) likely 
recolonized northern Europe along such an eastern route. 
The two former species also recolonized along the south-
ern route, making Scandinavia a contact zone for some 
species. 

In addition to the three routes recognized, there may 
possibly be a ‘northern route’ from refugia located within 
the ice sheet (yellow dots in Fig. 1). The few signs of in 
situ glacial bryophyte survivors could imply that this has 
occurred only rarely, that our tools for inferring glacial 
survival are too imprecise, or, as an extension, it could also 
be that ancient genetic variants are regularly swamped 
by post-glacial colonizers. Genetic swamping implies re-
moval of genetic signals of glacial survival (e.g. the pres-
ence of old alleles and genetic differentiation from other 
populations), and this phenomenon could be particularly 
pronounced in organisms with high dispersal capacity. 
Due to the small spore sizes and potentially high disper-
sal abilities of many bryophytes, one may expect genetic 
swamping to be a potential problem in studies aimed at 
detecting glacial refugia. It is also worth keeping in mind 
that mutation models profoundly affect historical time 
estimates, and estimated divergence time between Sphag-
num angermanicum populations would be more recent, 
perhaps more recent than the LGM, if actual mutation 
rates are higher than the approximations used in the cal-
culation of divergence time (Stenøien et al. 2011a). The 
most likely glacial refugia of S. angermanicum would in 
that case be in North America, not southern Europe or 
in situ. Mutation rate would also affect estimated species 
age (e.g. Sphagnum troendelagicum, Stenøien et al. 2011b), 
and speciation after the LGM could explain endemics in 
previously glaciated areas. To our knowledge, marker mu-
tation rates are quite low in many bryophytes (cf. Stenøien 
2008), but it is pivotal for future phylogeographic studies 
to obtain more precise measures of mutation rates of the 
markers employed. More studies are needed to assess the 
importance of northern refugial populations, including 
studies of arctic species occurring in harsh environments 
and species known as macrofossils from ice-free areas in 
Scandinavia (Vorren et al. 2013). 

Care must be taken when inferring refugia, plausible 
range expansions and other factors from genetic data 
(Table 2). Range expansion typically leads to a decline in 
heterozygosity with increasing distance from the ancestral 
populations, as well as increased frequency of specific al-
leles through genetic surfing (Slatkin and Excoffier 2012). 
High levels of genetic variability will often provide infor-
mation for hypothesizing where refugial areas have been 
located (Hewitt 2004), but this association between age 
and levels of variability will not always hold. For instance, 
rapid population growth may cause increased probability 
of maintaining genetic polymorphisms (Waxman 2012), 
and differences in population size fluctuations could ex-

Figure 3. Relationship between FST-values between populations 
of bryophytes and the frequency of sporophyte production (rare 
and frequent) in 14 bryophyte species. Bryophytes reproducing 
frequently (mean = 0.16) seem to be less genetically differenti-
ated than bryophytes reproducing rarely (mean = 0.38, t = –2.49, 
DF = 7.73, p = 0.04).
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plain at least part of the observed differences in genetic 
variability levels among populations. Also, if an area has 
acted as a contact zone, with high genetic variation caused 
by immigration of multiple lineages during colonization, 
then levels of variation may be misleading for pinpoint-
ing populations of origin (Hassel et al. 2005, Provan and 
Bennett 2008). On the other hand, refugial populations 
may have a higher level of unique haplotypes than rec-
olonized regions (Ehrich et al. 2008), and the latter may 
often contain only a few very different haplotypes (Provan 
and Bennett 2008, Ansell et al. 2011). Similarly, ancient 
haplotypes that are closely related to one another can 
sometimes be found in refugial areas, as demonstrated in 
vascular plants (Ansell et al. 2011).

It has been hypothesized that sporophyte and spore 
characteristics should be associated with dispersal abili-
ties in bryophytes (Sundberg 2010). Thus, bryophytes 
reproducing frequently with small spores should have 
wider distribution ranges than species that reproduce 
rarely and/or have large spores. Indeed, the results of the 
meta-analyses performed here indicate that species with 
small spores have wider distribution ranges in Europe 
than species with large spores. This indicates that spore 
size may be important for long distance dispersal events 
to occur and that spore sizes may explain the wide dis-
tribution ranges of bryophytes on a global scale. On the 
other hand, frequency of sporophyte production seems to 
be more important than spore size in preventing genetic 
differentiation, as species that produce spores frequently 
have lower FST between populations than species that pro-
duce spores rarely. No such pattern is found between FST 
and spore size. Moreover, no association is found between 
European regions and life-history traits and FST, respec-
tively. This could be due to species being geographically 
limited by other factors than the ones we studied, such 
as temperature or precipitation. This could also be an ef-
fect of low sample size, since most species included in the 
meta-analyses occur in two or more elements. 

In general, we cannot rule out the possibility that the 
observed pattern in bryophytes to some extent could be 
influenced by sampling bias, since sampling was conduct-
ed on different geographical scales in the various studies 
included and different molecular markers have been used. 
There are also problems with relatively few species being 
included in the test, many of them belonging to the same 
genera. Recently, Szövényi et al. (2012) showed that dis- showed that dis-
persal of Sphagnum spores are likely highly efficient and 
can be approximated by a random colonization model 
preventing genetic structuring on regional scales. Several 
bryophyte species reviewed here have one or more haplo-
types that are widespread throughout Europe (Werner and 
Guerra 2004, Vanderpoorten et al. 2008, Hedenäs 2012, 
Kyrkjeeide et al. 2012), indicating that little genetic struc-, indicating that little genetic struc-
ture may also be found on a broader geographical scale. 
Also, Sundberg (2012) found that spore size did not have 
a large influence on dispersal abilities in Sphagnum. These 

findings fit well with our results as we found no significant 
relationship between spore size and FST. Dispersal ability 
does not seem to explain why one or a few haplotypes 
are widespread while others are limited geographically. It 
might be that some haplotypes were faster at occupying 
available habitats when the climate changed or that spore 
production has been more successful in these haplotypes. 

Conclusion

Eastern, southern and western refugial areas similar to 
those found in vascular plants seem to have harboured 
bryophytes during the LGM, and colonization routes 
and contact zones in bryophytes resemble those found 
for other organisms. More studies are needed to conclude 
if these are general trends among bryophytes, as most of 
the recognized refugia and colonization routes are in-
ferred based on relatively few studies and hence, a lim-
ited number of species. Specifically, more data are needed 
regarding potential survivors of ice-free refugia in arctic 
areas and potential nunatak areas in Iceland, Scotland, 
Faeroe Islands and Norway, to elucidate to what extent in 
situ glacial survival occurred during the LGM. Applying 
statistical phylogeographical methods (Knowles 2009) for 
estimating historical demographic parameters seems to be 
a promising way to infer more accurately the evolutionary 
history of bryophytes. The wide distribution ranges and 
potentially high dispersal ability of many bryophyte spe-
cies emphasises the need for broad sampling in phylogeo-
graphical studies of bryophytes to study the importance 
of glacial refugia also outside of Europe for post-glacial 
colonization of this continent. 
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