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Abstract
Background and Research Aims: Morphological and physiological effects of anthropogenic metals have been the focus of
several studies in the Sierra de Huautla Biosphere Reserve (REBIOSH, Mexico) but little is known about how they affect anurans
in the area.We evaluated metal bioaccumulation in anurans from streams in the REBIOSH and examined anuran communities in
five sites at different positions relative to abandoned mine tailings.
Methods: Three and two sites were located upstream and downstream from mine tailings, respectively. We collected anuran
community information and obtained sediment, water and liver samples for metal quantification from each site.
Results: Concentrations of Cu, Pb, Zn and Mn in water, and Zn, Mn, Fe and Cr in sediment, were significantly different among
sites.We found bioaccumulation of Pb, Zn and Fe in livers of Smilisca baudinii, Lithobates spectabilis, L. zweifeli and Rhinella horribilis,
species with different life traits. We found similar among-site species richness and diversity. Communities were dominated by L.
zweifeli, R. horribilis and S. baudinii. Dominance was highest in sites distant from mine tailings. Agalychnis dacnicolor, Tlalocohyla
smithii and Hypopachus variolosus were only present in sites located closest to mine tailings.
Conclusion:Wedid not detect an effect ofmetal bioacummulation on anuran communities, but our findings suggest a potential effect
on certain species in the protected area. Our results form a baseline for future explorations of the impacts of metals in the region.
Implications for Conservation: Toxic metal bioaccumulation has potential for reducing anuran genetic variability and
altering sexual proportions and fecundity, potentially leading to anuran extirpations. We provide first evidence for metal
bioaccumulation in anurans in the protected area, and one of few studies on its anuran communities. Our evidence can serve as
guidance to ameliorate effects of legacy metal mining in this biodiversity hotspot.
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Introduction

Metal mining activities have an essential role in the economic
development of modern societies but often have significant
negative long-term impacts on natural ecosystems (Chen
et al., 2019; Xiao et al., 2020) due to the generation of
mine tailings rich in heavy metals and metalloids that are not
biodegradable and accumulate in the environment. Metals
bioaccumulate in different organisms and incorporate into
trophic chains (Mussali-Galante et al., 2013a). Thus, not only
are metals a risk for organisms in direct contact with a source
(i.e., via inhalation or by skin contact), but also to others who

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons
Attribution-NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use,
reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE

and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).

1Centro de Investigación en Biodiversidad y Conservación, Universidad
Autónoma del Estado de Morelos, Cuernavaca, México
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are indirectly exposed via their food sources (Soliman et al.,
2022).

Mexico has a long history of mining activities; mining
accounts for approximately 4% of national gross domestic
product (SE, 2020). Unfortunately, mining in Mexico has led
to environmental deterioration throughout the country. For
example, the state of Morelos in south-central Mexico has a
long history of metal mining (e.g., silver [Ag], copper [Cu],
iron [Fe], lead [Pb]). While mining activity has declined in the
state (SGM, 2020), abandoned mine tailings continue to
threaten natural ecosystems. Old mining operations have left
a legacy of numerous solid mine tailings from which metals
leach out into streams and groundwater or are dispersed by
wind (CONANP, 2005).

Huautla, a small town in southern Morelos located inside
the MAB-UNESCO Sierra de Huautla Biosphere Reserve
(REBIOSH) is surrounded by approximately 780,000 tons of
silver, lead, and zinc (Zn) mine solid tailings that have gone
without proper environmental treatment (Márquez-Huitzil
et al. 2022). Metals are responsible for numerous docu-
mented negative effects on local biota and humans (Mussali-
Galante et al., 2013a; Mussali-Galante et al., 2013b; Tovar-
Sánchez et al., 2016; Muro-González et al. 2020, Santoyo-
Martı́nez et al., 2020; De la Cruz-Guarneros et al., 2021)
(Figure 1).

Anurans are particularly sensitive to metal pollution
(Egusquiza-Morı́nigo, 2016; Kiesecker et al., 2001; Venne
et al., 2006). They incorporate metals into their bodies pri-
marily via respiration, ingestion and skin absorption
(Hopkins, 2007; Ilizaliturri, 2010). Exposure to metals is one
of many anthropogenic stressors threatening amphibians in
tropical environments and has led to extirpations (Hopkins,
2007; Jofré et al., 2012) and alteration of community structure
(Ficken & Byrne, 2013; Calderon et al., 2019). While a
growing body of literature has reported on anthropogenic
effects on anurans in Mexico (Hernández-Ordóñez et al.,
2015, 2019), few have directly documented the effects re-
sulting from metal exposure and bioaccumulation on their
community structure (but see Suárez et al., 2016).

At least 38 species of anurans have been described in
the state of Morelos (Castro-Franco et al., 2006; Ramı́rez-
Bautista et al. 2023). Tropical dry forests in the southern
portion of the state are home to at least 29 species (Castro-
Franco et al., 2006). While most anurans require fresh-
water environments in early stages of their ontogeny, as
adults they adopt life strategies that lead to differential
use of areas throughout a stream ecotone. Species such as
Van Vliet´s Frog (Smilisca baudinii), Mexican Leaf Tree
Frog (Agalychnis dacnicolor) and Dwarf Mexican
Treefrog (Tlalocohyla smithii) are tree-living species;
Zweifel´s Frog (Lithobates zweifeli) and Showy Leopard
Frog (L. spectabilis) live in areas surrounding permanent
waterbodies; and Giant Toad (Rhinella horribilis) and
Confusing Toad (Incilius perplexus) live in terrestrial
environments but do not move far away from bodies of

water (Cortés-Suárez, 2017). Differential habitat use has
been suggested to lead to varying potential metal bio-
accumulation among species (Stolyar et al., 2008; Zhou
et al., 2008; Jofré et al., 2012; Severtsova & Aguillón-
Gutiérrez, 2013; Severtsova et al., 2013; Gastelum et al.,
2019; Thanomsangad et al., 2019). Similarly, some evi-
dence exists that anuran community structure can be
affected by mining activities; species sensitive to metal
bioaccumulation may disappear from communities close
to mining operations (Ficken & Byrne, 2013; De Lucca
et al., 2018; Calderon et al., 2019).

Here we document metal concentrations in water and
sediment from stream habitats, and report metal bio-
accumulation in Smilisca baudinii, Rhinella horribilis,
Lithobates zweifeli and L. spectabilis, from sites located
along a stream near Huautla. Sites were located at dif-
ferent positions upstream and downstream from mine
tailings; we expected higher metal concentrations and
bioaccumulation in areas closer to these structures.
Further, we report on anuran community structure in these
sites; where we expected differences in composition and
diversity related to the proximity to mine tailings. This is
the first report of metal bioaccumulation in anurans of the
state and region, and one of few accounts of the anuran
fauna in the REBIOSH.

Methods

Study Sites

The Sierra de Huautla Biosphere Reserve (REBIOSH) is a
natural protected area in the southern State of Morelos
(Figure. 1). REBIOSH was established in 1996, but mining
(for Ag, Pb, Zn) activity had been present in the area since
1774 (Ruı́z de Velasco, 1890; Volke and Velasco, 2005) and
until 1991 (CONANP, 2005), when it ceased. Named mine
tailingsHuautla and Las Presas, located approximately at 18°
26’ N-99° 01’ Wand 18° 27’ N-99° 01 ’W (at an altitude of
995 m above sea level), remained at less than 500 m from
streams once mining activity ceased (Mussali-Galante et al.,
2013b;Márquez-Huitzil et al., 2020). Other unnamed tailings
were also left close to streams (Figure 1). Much is unknown
about the attributes of mine tailings; those from the Las Presas
tailings have a pH = 8.2, a predominant particle size <45 μm,
and a cation exchange capacity of 30.1 cmol (+) kg
(Hernández-Plata et al., 2020). Solı́s (2016) reported gen-
erally high concentrations of cadmium (Cd) (48.6 mg/kg), Cu
(214.8 mg/kg), Fe (28296.7 mg/kg), manganese (Mn)
(605.4 mg/kg), Pb (5265.9 mg/kg) and Zn (3778.3 mg/kg)
from these mine tailings.

The Huautla and Ajuchitlán streams are small (maximum
width = 10.5 m), intermittent, medium gradient systems that
drain a semi-arid mountainous area of REBIOSH dominated
by dry tropical forest. Once the Ajuchitlán joins the Huautla,
the stream runs S and E to join the Amacuzac river (Balsas
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Basin). The study sites were located along the Huautla and
Ajuchitlán streams. The Huautla runs generally N to S from
the town of Quilamula, feeds the Lorenzo Vázquez (also
known as Cruz Pintada) reservoir (≥ 300,000 m3) (CEAGUA,
2017), continues S towards Huautla where it meets Ajuchitlán
Stream and crosses the town of Huautla, to continue south
adjacent to the tailings. The Ajuchitlán runs generally NE to
SW for about 8 km after crossing the town of Ajuchitlán and
entering a relatively small gorge where a paved road tran-
siently crosses the stream before it joins the Huautla
(Figure 2). The Ajuchitlán is also dammed upstream from the
town. In the dry season (November-June) both streams
typically loose longitudinal connectivity with pools re-
maining in some areas; during the rainy season (July-
October), both streams regain connectivity. Both systems
have a relatively quick response in discharge after precipi-
tation events and erosion from surrounding mountains and
tailings is common. Prevailing winds in the area are from the
North (Ortı́z, 2019).

For this study, we sampled five sites located on Ajuchitlán
(n = 1, site AU1, approximately 5.5 km upstream from mine
tailing Huautla) and Huautla streams (n = 4). Sites in the
Huautla were located 8.4 (HU1) and 6.2 (HU2) km upstream
from the tailing Las Presas. Two other sites were located 0.4
(T1) and 1.6 (DW) km downstream from tailing Las Presas

(Figure. 1). Sites were chosen given their ease of access and
their position relative to the mine tailings.

Sample Collection

We sampled water and sediment from each site in January
2019. Three water and sediment samples were obtained in
each site. Three - 500 mL water samples were obtained from
each site following methods in NMX-AA-051-2016 (NMX,
2016). All samples were preserved in the field by adding
suprapure nitric acid (NHO3) to attain pH < 2. Water samples
were transported to the laboratory in clean polypropylene
bottles and refrigerated at 4.0 °C (± 2.0 °C) until further
processing. Three superficial sediment samples were obtained
following procedures in NMX-AA-112-SCFI-2017 (NMX,
2017) and NMX-AA-014-1980 (NMX 1980) from pools in
each stream. Sediment samples were obtained with a shovel
and kept in heavy duty polyethylene 500 mL bags (Whirl-
Pak®) which were then transported to the laboratory at 4°C.
In all, 30 (15 water and 15 sediment) samples were obtained
and processed.

We sampled the anuran community and obtained liver samples
for metal concentration measurements at different times of the
year in 2018-2019. The anuran community was sampled in sites
HU1, HU2, T1 and DW once monthly between June and

Figure 1. Study sites in the Huautla and Ajuchitlán streams in the southern portion of the State of Morelos, Mexico where anurans were
collected. Sites (AU1, HU1, HU2, T1 and DW), towns and the approximate location of mine tailings are shown. The grey shading indicates
the area inside the Sierra de Huautla Biosphere Reserve (REBIOSH). The orange shading indicates the location of unnamed tailings within the
Las Presas tailings, according to data from Mussali-Galante et al. (2013b) and Márquez-Huitzil et al. (2022).
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September 2018; sites AU1, HU1, HU2, T1 and DW (Figure 1)
were sampled once monthly in June and July 2019. Sampling
periodswere restricted by budgetary and logistical constraints. Six
20 x 2 m (total area = 20m2) transects were established within
each site alongside the wetted portion of the stream (Scott &
Woodward, 2001). We sampled for anurans within these tran-
sects. To avoid double counting of individuals, transects were
separated by at least 50 m. All transects (total transects = 156)
were surveyed once during each field trip by three observers at
nighttime (20:00-24:00). Within each transect we carried out
visual encounter surveys (VES) (Crump& Scott, 2001), in which
we slowly walked along the transect looking into all possible
microhabitats (to a height of 2 m above ground) where anurans
could be located. Detected anurans were capturedmanually using
nitrile gloves; each individual was placed in its own clean plastic
bag until it was identified (Casas-Andreu et al., 1991).

Individuals were identified following Canseco-Márquez &
Gutiérrez-Mayén (2010), Flores-Villela et al. (1995) and
Frost (2021). Once identified and counted, most individuals

were released in the vicinity of the collection site, but some
were kept for further processing (see below). All individuals
were collected under permit SGPA/DGVS/008320/18 grant-
ed to EACR (author).

Individuals of four anuran species were selected for metal
processing: Rhinella horribilis, Lithobates spectabilis, L.
zweifeli and Smilisca baudinii. Selection was based on these
species not being “red listed” by NOM-059-SEMARNAT-
2010 (Semarnat, 2010) or the International Union for Con-
servation of Nature (IUCN, 2023), their ease of capture,
abundance in the area, relatively large size and relatively
well-known biology, including their habitat preference.
Rhinella horribilis prefers terrestrial habitats with high hu-
midity, including savannahs, open forests, degraded areas
such as low grasslands or near human settlements (Cortés-
Suárez, 2017). Lithobates spectabilis and L. zweifeli typically
inhabit in proximity to permanent water bodies surrounded by
deciduous tropical forest (Chávez-Ramı́rez, 2017). Smilisca
baudinii typically inhabits ponds, streams and crevices with

Figure 2. Sampling sites. The physical structure of the study sites is shown. The letters indicate: A) AU1, B) HU1, C) HU2, D) T1 and E) DW.
All photos by Eduardo Aarón Chávez Ramı́rez.
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leaves and branches (Santos-Barrera et al., 2010). Individuals
captured in each site (see Table 1) were transported to the
laboratory, where they were sacrificed with a local anesthetic
following McDiarmid (2001). Individuals were then dis-
sected, and their liver extracted for further processing. In-
dividuals processed for metal concentration measurements
were then fixed and deposited in the Alfonso Herrera Zoo-
logical Museum of the Universidad Nacional Autónoma de
México (MZFC-HE).

Concentration of Metals in Water,
Sediments and Anurans

Water and sediment samples were processed to quantify metal
(Fe, Mn, Zn, Cu, chromium [Cr], Cd and Pb) concentrations.

Prior to metal concentration analyses, water samples were
filtered with a 45-µm membrane prewashed with nitric acid
(1%) (see NMX-AA-051-SCFI-2001 [NMX, 2001]).

A total of 58 livers (7, 20, 14 and 17 for R. horribilis, L.
zweifeli, L. spectabilis, and S. baudinii, respectively) were
analyzed to determine the concentration of metals (Cd, Cr,
Cu, Fe, Mn, Pb and Zn) following previous studies in the area
(Mussali-Galante et al., 2013a; De la Cruz-Guarneros et al.,
2021). Samples were individually dried (electric stove at
70°C, until they reached a constant weight) and sieved fol-
lowing the method established by the Mexican standard
NMX-AA-132-SCFI-2006 (NMX, 2006). Each dehydrated
liver was placed in a polyethylene terephthalate (PET)
container previously washed with a 10% nitric acid solution.
For metal analysis, a 0.25 g (dry weight) porcelain-pulverized
portion of each liver was used. Samples were subjected to

Table 1. Mean (± standard error, SE) concentration of metals in water (mg/L), sediments (mg/kg), and anuran liver (mg/kg) samples from
specimens captured in five sites (S) of the Huautla and Ajuchitlán streams in the State of Morelos, Mexico. Only metals with significant
differences (PERMANOVA) among sites are shown. Values for sediment and water samples from nine samples obtained per site. Number of
individuals examined per species are included (R. horribilis, n = 7; L. zweifeli, n = 20; L. spectabilis, n = 14 and S. baudinii, n = 17); three samples
from each individual were examined for metal quantification (n = 58). # denotes the number of water, sediment and liver samples analyzed.
Letters accompanying concentration values indicate significance; different letters for a metal denote significant differences for metal
concentration. UPS) up stream; TAL) Tailings; DWS) Downstream; nd) not detected.

Type Metal

UPS TAL DWS

AU1
Mean ± SE

HU1
Mean ± SE

HU2
Mean ± SE

T1
Mean ± SE

DW
Mean ± SE

Water Pb 2.926 ± 0.053ac 2.628 ± 0.030a 3.365 ± 0.042a 4.383 ± 0.052bc 5.078 ± 0.059b
Cd 0.093 ± 0.003a 0.105 ± 0.002a 0.081 ± 0.001a 0.008 ± 0.002a 0.108 ± 0.003a
Cu 1.262 ± 0.024a 1.464 ± 0.018 ab 1.496 ± 0.007 ab 1.679 ± 0.007 ab 1.716 ± 0.017b
Mn 0.126 ± 0.010a nd 0.096 ± 0.016ab 0.155 ± 0.014a 0.424 ± 0.007ac
Zn 0.112 ± 0.001a 0.038 ± 0.006ab 0.120 ± 0.003a 0.158 ± 0.002ac 0.124 ± 0.002a
# 3 3 3 3 3

Sediment Mn 1.240 ± 0.016a 0.534 ± 0.013b 0.479 ± 0.037b 0.815 ± 0.051b 1.617 ± 0.023a
Zn 4.123 ± 0.339a 1.737 ± 0.126bc 3.216 ± 0.429ac 5.980 ± 0.463bd 3.683 ± 0.324a
Cr 1.409 ± 0.071a 1.926 ± 0.007a 1.966 ± 0.014b 1.675 ± 0.046ab 1.002 ± 0.011c
Fe 162.050 ± 2.058a 234.189 ± 3.095ac 143.013 ± 3.604bd 126.473 ± 6.603b 198.156 ± 3.448bc
# 3 3 3 3 3

L. zweifeli Pb 0.082 ± 0.001a 0.005 ± 000b 0.188 ± 0.005bc 0.035 ± 0.019ac 0.017 ± 0.001bc
Zn 4.346 ± 0.192a 6.689 ± 0.569a 0.810 ± 0.001b 0.446 ± 0.006ab 0.595 ± 0.035ab
# 6 5 1 5 5

L. spectabilis Pb nd 3.833 ± 0.202a 2.557 ± 0.087ab 4.007 ± 0.085a 0.131 ± 0.004ac
Zn nd 0.319 ± 006a 0.570 ± 0.012b 0.481 ± 0.010a 7.464 ± 0.417c
Fe nd 1.638 ± 0.065a 8.107 ± 0.784b 2.463 ± 0.075a 25.958 ± 0.684b
Cu nd 0.134 ± 0.004a 0.428 ± 0.008b 0.286 ± 0.003a 0.311 ± 0.018ab
# - 1 18 3 18

S. baudinii Zn nd 0.224 ± 0.005a 6.816 ± 0.339b nd 1.135 ± 0.058ab
Fe nd 1.436 ± 0.080a 19.873 ± 0.629b nd nd
Cu nd 0.214 ± 0.007a 0.293 ± 0.008b nd 0.312 ± 0.005b
# - 1 24 - 21

R. horribilis Pb nd nd nd 4.062 ± 0.048a 2.869 ± 0.042b
Zn nd nd nd 0.412 ± 0.007a 0.719 ± 0.008b
Mn nd nd nd 0.212 ± 0.006a 0.153 ± 0.009b
Fe nd nd nd 2.035 ± 0.023a 6.559 ± 0.119b
Cu nd nd nd 0.412 ± 0.011a 1.392 ± 0.021b
# - - - 18 3
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acid digestion using an accelerated reaction system micro-
wave (CEM®MARS-5), using 10 mL of 70% HNO3 in
closed Teflon pumps. Samples were dissolved to a final
volume of 50 mL for analysis. A sample without tissue was
processed concurrently and was utilized as a control. Metals
were then analyzed by atomic absorption spectrophotometry
(GBC-908-AA, Scientific Equipment Ltd.), a technique that
determines the concentration of a metallic element in a
sample, calibrating the spectrophotometer with standard
solutions containing known concentrations of each analyzed
item. The standard calibration curves showed correlation
coefficients (r2) between 0.99 and 1. For each metal analyzed
the average value of three repeated quantifications for a
sample is reported. Concentration values for water are re-
ported in milligrams/liter. Concentration values for sediment
and liver samples are reported in milligrams/kilogram
(mg/kg) dry weight. The minimum detection limits (mg/L)
according to the manufacturer of the spectrophotometer were
0.0004 for Cd, 0.003 for Cr, 0.001 for Cu, 0.005 for Fe,
0.0015 for Mn, 0.01 for Pb and 0.0005 for Zn. When metal
concentrations were below detection limits, we used 0.5 of
detection limit for statistical analyses.

Statistical Analyses

We calculated the average and standard deviation for each
metal concentration for each species per site. We compared
metal concentration (for each metal) among sites and per
species among sites using Bray-Curtis distances from a tri-
angular matrix using permutational multivariate analysis of
variance PERMANOVA (Anderson et al., 2008). Metal
concentration data used in PERMANOVA were fourth root-
transformed based on type 1 sequential sums of squares
(Legendre & Gallagher, 2001). In these analyses, species or
sites were used as fixed factors. Each was analyzed using
pairwise analyses via PERMANOVA t with 9999 permuta-
tions. P-values were calculated using Monte Carlo simula-
tions following Anderson et al. (2008). PERMANOVA draws
statistical inferences in a distribution-free process based upon
geometric partitioning of distance measures. We used a
principal component analysis (PCA) to explore metal con-
centration variability among sites (for water, sediment, and
liver samples) and species. All analyses were carried out
using Primer 7.0.13 (Clarke & Gorley, 2015).

We explored species richness, capture rates (number of
specimens captured per sampling hour), total and relative
abundance, sampling completeness and species diversity
from anuran community data. Only data from replicated
transects (AU1 n = 12; HU1-DW n = 36) in each site were
used for these calculations and comparisons. Since temporal
differences in diversity were not significant (tHutch-
enson =0.585, df = 4212.9, P = 0.558), data from transects in
each site taken on different dates were grouped for analysis.
We analyzed sample completeness in all sites to assess
richness variation in relation to Chao 1 and Bootstrap

estimators (Chao & Jost, 2012; Gotelli & Colwell, 2011;
Moreno et al., 2011).We estimated three diversity dimensions
based on Hill’s numbers: Species richness or Chao 1 (q0), the
number of common species or Shannon-Wiener´s exponen-
tial (q1), and the number of dominant species or inverse
Simpson (q2) (Chao, 1984; Jost, 2006; Moreno et al., 2011).
For each measure of diversity, we calculated confidence
intervals (CI) at 95% which were then used to estimate
among-site differences. These analyses were carried out in R
(iNEXT package, V 2.0.17) (Hsieh et al., 2016). Compari-
sons among diversity indexes were based on Euclidean
distance matrices via PERMANOVA (Anderson, 2001). We
also evaluated anuran assemblage similarity using Sørensen
and Jaccard indexes (Magurran, 1988; Moreno, 2001). Rank-
abundance curves were generated for the assemblages in each
site. These curves depict the abundance of each taxon relative
to the total number of individuals in the assemblage
(Whittaker, 1965).

Results

We found significant differences in metal concentrations
among sites for water (Fpseudo = 3.6725, Pperm = 0.0005) and
sediment (Fpseudo = 172.27, Pperm = 0.0001). The first two
axes of the PCA on metals in water samples explained 79.1 %
of variability, driven mainly by Pb, Cu and Zn concentrations,
with Mn and Cd being relatively less important drivers
(Figure 3A). The similarity percentage analysis showed
differences (at P < 0.05) between AU1, HU1 and HU2 with
T1 and DW, but not between AU1, HU1 and HU2 or between
T1 and DW. Cu, Pb, Zn and Mn were mostly responsible for
these differences. T1 and DW had higher Cu, Pb and Mn,
compared to AU1, HU1 and HU2 (Table 1, Figure 3A).

The first two axes of the PCA analysis on metal con-
centrations in sediment explained 98.2% of variability among
sites (Figure 3B). This variability was driven by Fe, Cr and
Mn concentrations, with Zn being relatively less important.
Similarity percentage analysis on metals in sediment con-
centrations showed differences (at P < 0.05 and P < 0.001)
among all sites, with Fe, Zn, Mn, or Cr being important in
explaining among site similarity depending on the sites being
contrasted; no consistent differences were found among sites
located close or far from mine tailings (Table 1, Figure 3B).

Metal Concentrations in Anurans

Pb, Zn, Cu, Mn, Fe and Cd bioaccumulated in livers of the
examined species (Table 1). Detectable Zn and Cu concen-
trations were found on specimens from all sites and species.
Cr was not detected in any sample. Pb was not detected in L.
zweifeli from sites HU1 or DW. Mn was not detected in S.
baudinii from DW, L. spectabilis from DW or in any L.
zweifeli. Fe was not detected in S. baudinii from DW. Cd was
not detected in S. baudinii from HU1, on L. spectabilis from
HU1 or T1, or any R. horribilis (Table 1).
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For liver we found significant differences among sites
(Fpseudo = 4.1874, Pperm = 0.0002), species (Fpseudo = 6.6511,
Pperm = 0.0003) and their interaction (Fpseudo = 4.3124,
Pperm = 0.0002). For L. zweifeli, among site Fe,Cu and Cd
concentrations were similar (F = 2.07, df = 4, P-perm = 0.12;
F = 1.68, df = 4, P-perm = 0.18; and F = 2.38, df = 4,

P-perm = 0.096; respectively). Pb concentrations in L.
zweifeli were significantly higher in site AU1 than in sites
HU1, HU2, T1 and DW (F = 8.44, df = 4, P-perm = 0.002).
Zn concentrations for this species were significantly higher in
site AU1 than in site HU2 and site T1 (F = 3.09, df = 4,
P-perm = 0.018). For L. spectabilis, among-site Pb

Figure 3. PCO triplot of variability in the levels of metals in A) water and B) sediment from five sites in the Huautla and Ajuchitlán streams in
Morelos, Mexico. The centroids of the groups are indicated by the site label and the contribution of each metal in a site is indicated by the
relative size of the pie section.
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concentrations were similar (F = 2.87, df = 3, P-perm = 0.06);
but Zn concentrations were significantly higher in sites
HU2 and DW, than in sites HU1 and T1 (F = 7.90, df = 3,
P-perm = 0.006). In L. spectabilis, Mn concentrations were
significantly higher in site HU2 than in sites HU1, T1 and
DW (F = 4.03, df = 3, P-perm = 0.03); concentrations from
site DWwere also higher than those in sites HU1 and T1 (F =
4.03, df = 3, P-perm = 0.03). Concentrations of Fe in L.
spectabiliswere much higher in site DW than in site HU2 and
sites HU1 and T1, respectively (F = 6.58, df = 3, P-perm =
0.007). Cu concentrations in L. spectabilis were higher in site
HU2 than in sites DWand sites HU1 and T1 (F = 5.10, df = 3,
P-perm = 0.01). For S. baudinii Pb and Mn concentrations
were similar among sites (F = 0.92, df = 2, P-perm = 0.42 and
F = 0.55, df = 2, P-perm = 0.612, respectively). For R.
horribilis median Pb (F = 392.27, df = 1, P-perm = 0.0001)
and Mn (F = 54.31, df = 1, P-perm = 0.0004) concentrations
were significantly higher in site T1 than site DW. In R.
horribilis, median Zn (F = 317.92, df = 1, P-perm = 0002), Fe
(F = 868.13, df = 1, P-perm = 0001) and Cu (F = 76.30, df =
1, P-perm = 0003) concentrations were significantly higher in
site DW that in site T1.

Considering metal concentrations in liver (irrespective of
species), the first and second axes of the PCA analysis ex-
plained 70.1% of variability among sites. Variability was
driven by Pb, Zn, Cu and Fe, with Mn and Cd being relatively
less important (Figure 4A). Sites AU1, HU1, HU2 and
T1 were significantly different (at p<0.05 or p<0.001) from
DW, but no differences were found among AU1, HU1 or
HU2. AU1 was significantly different from T1 (p<0.001)
(Table 1). These differences were mostly driven by Cu and Pb
concentrations, with Mn, Zn and Fe also having some
contribution.

Lithobates spectabilis, L. zweifelli and S. baudini differed
in the concentration of metals in liver, irrespective of site
(Figure 4B). First and second components of a PCA on this
data explained all among-species variability, and this was
driven by changes in Pb, Fe and Zn, with other metals playing
a relatively smaller role. Nearly all metals were found at
higher concentrations in L. spectabilis, except Cd (higher in
L. zweifeli) and Pb (higher in S. baudini).

Generally, site x species interaction on similarity per-
centages analyses for L. spectabilis, L. zweifeli and S. bau-
dinii indicated significant differences in liver concentrations
between sites far from (AU1, HU1 and HU2) and close to the
mine tailings (T1 and DW). A PCA of such interaction ex-
plained close to 70% variability on first and second axes
(Figure 4C), and was most influenced by Fe, Pb and Zn
concentrations, with other metals playing a relatively smaller
role. For L. spectabilis, significant differences were found
between HU1, HU2 and T1 with DW, but not with T1. These
changes were primarily driven by Pb, Mn and Cd (Table 1).
For L. zweifeli, significant differences were found between
AU1, HU1 and HU2 with T1, but not DW (Table 1); Zn and
Cu concentrations were responsible for these differences. For

S. baudinii, significant differences were found between
HU2 and T1 with DW and between T1 and DW; other sites
did not show differences. Differences in concentrations of Pb,
Fe, Zn, Cu and Mn guided these differences (Table 1).

Anuran Communities

We captured 199 anurans (nine species, eight genera, four
families, Table 2) in 260 hours of sampling in wet season
sampling events in 2018 (n = 99) and 2019 (n = 100). Overall
average rate of capture was 0.77 ind./hr. Considering both
sampling years, capture rates in site AU1 (1.18 ind./hr.) were
higher than those in T1 (1.04), DW (0.83), HU2 (0.59), and
HU1 (0.40). Species richness was similar among sites
(Table 2). Sample completeness in each site was between 83-
100 % and 75 – 100% according to Chao 1 (AU1, HU1,
HU2 and T1 100%; HU1 = 83%) and Bootstrap (AU1 = 75%;
HU1-HU2 = 83%; T1 = 100; DW = 89%) procedures,
respectively.

DW (n = 55) and T1 (n = 53) had the highest anuran
abundance and richness (S = 8 and S = 7, respectively)
(Table 2). HU1 and HU2 had intermediate richness (both with
S = 5) and AU1 had the lowest species richness (S = 3). The
number of common and equally abundant species were
significantly lower in AU1 than in HU1, HU2, T1 and DW
(F = 6.383; df = 4, P-perm = 0.0001). Paired comparisons
PERMANOVA showed differences between AU1 and HU2,
T1 and DW (P-perm < 0.01); HU1 and HU2, T1 (P-perm <
0.01); HU2 and AU1-DW (P-perm < 0.01); T1 and AU1,
HU1, HU2 (P-perm < 0.01); and DW and AU1, HU2
(P-perm < 0.01).

The most abundant and prevalent species was Lithobates
zweifeli (n = 74, 5 sites) followed by Rhinella marina (33, 5)
and Smilisca baudinii (31, 4); least abundant species were
Hypopachus variolosus (2, 1) and Agalychnis dacnicolor
(2,1) (Table 2, Figure 5). Considering all sampling events, in
AU1 the most and least abundant species were L. zweifeli (n =
36) andD. arenicolor (n = 1) respectively (Table 2). Most and
least abundant species in HU1 were L. zweifeli (n = 15) and R.
horribilis (n = 1) (Figure 5). Lithobates spectabilis was the
most abundant species in HU2 (n = 13) while the least
abundant species (n = 2) were L. zweifeli and R. horribilis.
The most abundant species in T1 were R. horribilis (n = 21)
and L. zweifeli (n = 11) and the least abundant species was H.
variolosus (n = 2). Smilisca baudinii and L. zweifeli were the
most abundant species (n = 15 and n = 10, respectively) in
DW; D. arenicolor was the least abundant (n = 1) species
(Table 2, Figure 5).

Community composition was most similar (using Jaccard´
s index) between sites AU1 and HU1, and T1 and HU2
(Table 2). Sites HU2 and HU1, and HU2 and T1 were also
similar; and HU2 and AU1 were most dissimilar (Table 2).
HU2 and T1 were most similar based on Sorensen´s index
and HU2 and AU1 were again, most dissimilar. Generally
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Figure 4. PCO triplot of variability in the levels of metals in amphibian livers from five sites in the Huautla and Ajuchitlán streams in Morelos,
Mexico. A) Includes the contribution of eachmetal in amphibian’s livers by site. B) Includes the contribution of eachmetal in amphibian livers
for a species. C) Includes the contribution of each metal in amphibian livers in a species x site interaction. Centroids of the groups (either site
and/or species) are presented.
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speaking, AU1 was most dissimilar to other sites using either
similarity index (Table 2) and species composition (Figure 3).

Discussion

Metals are known to have important consequences for the
individual health of anurans and are a known factor for the
decline of several anuran populations worldwide (Lee, 2000;
Hernández et al., 2013; Severtsova & Aguillón-Gutiérrez,
2013; Aguillón-Gutiérrez & Ramı́rez-Bautista, 2015; Suárez
et al., 2016). However, metal effects on anurans in the wild
and at higher levels of biological organization have been
poorly studied in Mexico (Ilizaliturri, 2010; Aguillón-
Gutiérrez & Ramı́rez-Bautista, 2015). In addition to pre-
senting updated information for the anuran community at the
REBIOSH (Herrera-Balcázar, 2014; Roa-Mata, 2017), our
work constitutes the first record of metal bioaccumulation for
anurans in the protected area and the State of Morelos. Our
findings should alert regional managers on potential threats
on the anuran communities from metal exposure.

Metal concentrations in water differed significantly among
all samples and sites closest to mine tailings (T1, DW)
typically had the highest values. Cu, Zn and Pb in site T1, and
Cd and Mn in DW, had the highest concentrations among
sites. Generally, mean metal concentrations in water from the
Huautla Stream were higher for Pb than Cu, Mn, Zn and Cd,
in decreasing order. Metal concentrations in sediments on the
other hand, showed among-site significant differences for Fe,
Zn, Mn and Cr, with Mn, Fe and Zn relatively higher in
T1 and DW, and Cr higher in HU2 and HU1. Zn and Mn were
higher in site AU1 than in sites HU2 y HU1; Mn was also

more concentrated in DW than in AU1. Sediment metal
concentrations in the Huautla Stream were higher for Fe than
Zn, Cr and Mn, in decreasing order. We suggest elevated
metal concentrations in both matrices for T1 and DWare due
to their relative proximity to the Las Presas mine tailings.
Sediment samples taken from different soil levels in these
mine tailings (Solı́s, 2016) show higher concentrations for Fe
than Zn, Pb,Mn, Cu, and Cd, in decreasing order; although all
were at higher concentrations than we found in our samples.
Additionally, tailings have low stability and are highly sus-
ceptible to wind and water erosion (Volke and Velesco, 2005),
which could lead to metal bioaccumulation via lixiviation
(Márquez-Huitzil et al., 2022) in sites T1 and DW. Pb, Cd, Cu
and Zn concentrations in water samples from the Huautla
Stream (0.082, 0.0018, 0.009 and 0.118 mg/L, respectively)
exceeded toxicity reference values (TRV) suggested by EPA
(2019). This renders water from the Huautla not recom-
mended for human consumption. However, we note that our
samples were taken during the dry season, when metal
concentrations usually are higher than those in the wet season
given lack of dilution of potential contaminants (Islam et al.,
2017; Pandey et al., 2019; Proshad et al., 2019; 2020). Water
hardness and its specific ionic properties, as well as chemical
composition of substrates can lead to among-matrix metal
concentration variability and bioavailability and should be
studied further in the area (Miranda et al., 2022).

Contrary to our expectations, upstream sites showed el-
evated metal concentrations. While relatively distant from
studied mine tailings, we recognize that the entire area could
be subject to relatively elevated natural metal concentrations.
What today is the REBIOSH was for decades one of the most

Figure 4. Continued.
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important mining districts in Morelos state and many mines
and other tailings exist in the area (Volke and Velesco, 2005,
Mussali-Galante et al., 2013b; Márquez-Huitzil et al. 2022).
As such, the area’s mineralogy is potentially elevated in
metals throughout. This, in addition to geologic weathering,
wind dispersal, atmospheric precipitation, erosion, bio-
turbation and human activity have likely accelerated metal
inputs into soil and water (Proshad et al., 2017, 2019, 2020;
Barats et al., 2020; Kabir et al., 2020). Finally, human waste
deposition, fertilizer and pesticide use are pervasive
throughout the area; these could be additional sources of
metals into the region´s soils and water resources (Rinklebe
et al., 2019; Timofeev et al., 2018; Varol et al., 2020).

We found Pb, Zn, Cu, Mn, Fe and Cd concentrations in the
livers from analyzed anurans. While some of these can be

considered essential (e.g., Zn and Fe) and were expected in
livers, others (e.g., Pb and Cd) are not and their presence
suggests exposure to anthropogenic contaminants. Our
findings agree with other studies that report liver as one (but
not the only) important target organ for metal bio-
accumulation in several organisms, including anurans (de la
Cruz et al., 2021; Curi et al., 2021). Diet and potential ex-
posure to metals in water and sediment could explain this
finding (EPA, 2019; Esteller et al., 2015; Rodrı́guez-
Rodrı́guez, 2020; Solı́s, 2016). Lepidopterans, Coleop-
terans, Hymenopterans and even larval anurans are known
food items for R. horribilis, L. spectabilis, L. zweifeli and S.
baudinii (Barrios-Damián, 2006; Mendoza-Estrada et al.,
2008). Many of those are primary consumers that may in-
corporate metals adhered to organic or inorganic material and

Table 2. Anuran community composition, community parameters and similarity indexes from five sites (AU1, HU1, HU2, T1 and DW)
sampled in the Huautla and Ajuchitlán streams in the southern portion of the state of Morelos, Mexico during 2018-2019. For species data we
present the number of individuals captured in each site; the number not in parenthesis is the total number of individuals captured, the number
in parenthesis is relative abundance (%) for the species in a site across both years of study. For each species, next to its name we present its
conservation status according to IUCN (2023). Community parameters and similarity indexes are as described in methods section.

Collection Data

Family Code

Site

TotalAU1 HU1 HU2 T1 DW

Bufonidae
Incilus perplexus LC Ip 0 0 3(12) 7(13) 6(11) 16(8)
Rhinella horribilis LC Rh 2(5) 1(4) 2(8) 21(40) 7(13) 33(16)

Hylidae
Agalychnis dacnicolor LC Ad 0 0 0 0 2(4) 2(1)
Smilisca baudinii LC Sb 0 7(27) 6 (23) 3(6) 15(27) 31(15)
Tlalocohyla smithii LC Ts 0 0 0 0 9(16) 9(4)
Dryophytes arenicolor LC Da 1(3) 2(8) 0 6(11) 1(2) 10(5)

Microhylidae
Hypopachus variolosus LC Hv 0 0 0 2(4) 0 2(1)

Ranidae
Lithobates spectabilis LC Ls 0 1(4) 13(50) 3(6) 5(9) 22(11)
Lithobates zweifeli LC Lz 36(92) 15(58) 2(8) 11(21) 10(18) 74(37)

Community parameters
Sample Coverage 0.97 0.92 1.00 1.00 0.98

q0 3 5 5 7 8 10
q1 1.3 3.0 3.7 5.2 6.5
q2 1.6 2.4 3.0 4.1 5.8

Abundance 39 26 26 53 55 199
Similarity indexes
Sørensen AU1 HU1 HU2 T1 DW

HU1 0.75 * * * *
HU2 0.50 0.80 * * *
T1 0.60 0.67 0.83 * *
DW 0.55 0.77 0.77 0.80 *

Jaccard AU1 HU1 HU2 T1 DW
HU1 0.60 * * * *
HU2 0.33 0.67 * * *
T1 0.43 0.50 0.71 * *
DW 0.38 0.63 0.63 0.67 *
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sediment in streams. Once bioavailable, metals are known to
bioaccumulate and biomagnify along the food chain
(Penicaud et al., 2017). An additional route for metals ex-
posure in anurans, includes direct contact with contaminated
water (Calderon et al., 2019; Jofré et al., 2012). Highly
permeable skin, typically involved in respiration, is a well-
known route for metal bioaccumulation in amphibians
(Sparling, 2017).

While our focus was not to detect anomalies or other
effects of metal accumulations in Huautla anurans, we note
that Pb, Fe, Cd, Mn, Zn and Cu are known to cause effects at
the individual, population and community levels in anurans.
Elevated concentrations of Pb and Fe can cause morpho-
logical abnormalities in developing anurans (Severtsova
et al., 2013; Severtsova & Aguillón-Gutiérrez, 2013;
Aguillón-Gutiérrez & Ramı́rez-Bautista, 2015; Aguillón-
Gutiérrez, 2018) which could lead to declines in recruit-
ment to adult populations. Cd accumulation can lead to
decrease in larval anuran survival, especially for species
highly dependent on plant material (Gastelum et al., 2019),
but another effect can be skin detachment (Severtsova et al.,
2013; Aguillón-Gutiérrez & Ramı́rez-Bautista, 2015). Mn,
Zn and Cu are essential micronutrients that at high con-
centrations can be highly toxic, as they accumulate in dif-
ferent organs in adult anurans and induce oxidative stress (via
oxygen reactive species [ROS]). This in turn can alter the
antioxidant defense system (AOS) (Londoño-Franco et al.,
2016; Prokić et al., 2016; Stolyar et al., 2008) and ultimately
cause genotoxic damage, which has been related to

detrimental effects at higher levels of biological organization
(Mussali-Galante et al., 2014).

We found several metals accumulating in livers of anurans
in the Huautla river, but the concentrations they attained are in
general lower than those found in similar studies. For ex-
ample, concentrations of 0.09 mg/kg for Cd, 2.78 mg/kg for
Cr, 19.70 mg/kg for Zn and 46.40 mg/kg for Cu, have been
reported in muscle and liver from anurans (Thanomsangad
et al., 2019, Zhelev et al., 2020). A lower concentration in the
Huautla versus other systems could result from slow but
steady mine tailing leaching into the environment as mining
activities ceased more than 30 years ago.

Anuran metal bioacummulation was not consistent among
species or sites. Given the location of sites relative to the
position of mine tailings, we expected T1 and DW to have
higher concentrations of all metals examined. However, some
metals were found at higher concentrations in sites located at
greater distance from mine tailings. Almost all metals ana-
lyzed, except for Cd, were found at higher concentrations in
L. spectabilis. Cd was found at higher concentrations in L.
zweifeli and Pb in S. baudinii. These three species have a
close relationship to water bodies for reproduction, feeding
and thermoregulation. They primarily feed upon aquatic
invertebrates and are also cannibalistic. These could be the
reasons for having elevated metal concentrations in liver
versus other species. However, lack of consistency in results
among species suggest multifactorial influences in metal
bioaccumulation for anurans in the region. High variability in
metal concentrations in anurans may stem from differential

Figure 5. Rank abundance curves for anurans from five sites in the Huautla and Ajuchitlán streams, Morelos. Curves are presented
independently for each site (AU1, HU1, HU2, T1 and DW). The nine species that occurred at the sampled sites are shown with codes:
Ip) I. perplexus; Rh) R. horribilis; Ad) A. dacnicolor; Sb) S. baudinii; Ts) T. smithii; Da) D. arenicolor; H. variolosus; Ls) L. spectabilis; Lz) L.
zweifeli.
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tissue bioacummulation rates for each metal, differential
exposure and excretion rates at the individual or species level
and generally differences in metal toxicokinetics and tox-
icodynamics (Thanomsangad et al., 2019).

Anuran Communities

In our study we found approximately 45% of all species
reported for the REBIOSH (Herrera-Balcazar, 2014) and
75 % of all species previously reported for the study area
(Roa-Mata, 2017). The highest richness, diversity and
abundance of anurans was obtained from T1 and DW
(sites also closest to existing mine tailings). Anuran
species distribution and abundance in a landscape depend
on a variety of factors influencing individuals, pop-
ulations and communities (Álvarez-Grzybowska et al.,
2020; Muths et al., 2020). Among these, anurans are
highly susceptible to humidity conditions. Tropical dry
forests are subject to seasonally dry conditions which can
be stressful for anurans; many streams in such areas can
dry up for extended periods. Under such conditions, we
hypothesize that a richer community can be found in areas
near mine tailings given increased water retention ca-
pacity. Areas with inactive mine tailings (i.e., areas where
not new materials are being dumped) tend to have highly
porous soils which can retain more water, leading to
increased vegetation cover and organic matter (Ramos-
Arroyo & Siebe-Grabach, 2006; Ryzhenko & Bokhonov,
2020). This in turn could provide increased humidity
conditions for anurans and facilitate their burrowing-in
during the dry season (Mora et al., 2012).

Anuran communities in the study area were dominated
by species in the Hylidae family, which is common for
neotropical regions (Both et al., 2008; Pansonato et al.,
2011). Families Bufonidae and Ranidae had two species
each and Microhylidae only one (Table 2). That semi-
aquatic L. zweifeli and L. spectabilis were the most
abundant species may follow their close association with
riparian areas (Canseco-Márquez & Gutiérrez-Mayén,
2010) throughout the year, even during dry seasons
(Chávez-Ramı́rez, 2017). Rhinella horribilis, a species
with relatively high tolerance to desiccation given a thick
and impermeable skin (Cruz-Piedrahita et al., 2018) was
also abundant, especially in T1. Similar abundance was
observed for S. baudinii, a species inhabiting trees but
with aquatic larvae. The least abundant species were
Hypopachus variolosus and Agalychnis dacnicolor. This
last species, larger than other hylids in the region and
sometimes considered a generalist, can often be found in
areas with anthropogenic activity (Mendenhall et. al.,
2014, Soto-Sandoval et al., 2017).

While our study provides important information on
community composition and potential threats from
mining pollution in the REBIOSH, we acknowledge that
our period of study was short, that we were not able to

explore communities during the dry season, that our study
area and sample number for some species was small and
that we assumed no anuran movement among sites. We
studied the anuran community only during the wet season
as this is when previous studies (Herrera-Balcazar, 2014;
Roa-Mata, 2017) had identified the highest abundance
and diversity for the group. Prior to this study we carried
out pilot sampling trips during the dry season (when only
isolated pools were present in the streams) and we were
unable to capture any anurans (applying a similar sam-
pling effort). Our study only encompassed three small
streams in the REBIOSH; several other lotic systems in
the REBIOSH exist which remain relatively unexplored
(i.e., the riparian area of the Amacuzac River) and where
the anuran communities require further study. However,
our assumption that individuals cannot move among sites
is generally supported by existing literature, as generally
anurans do not move >1km away from their breeding site
(Jeliazkov et al., 2019; Lemckert 2004). For metal ana-
lyses in some sites we were only able to obtain and
process one individual of a given species. We caution that
metal concentrations from such samples, absent measures
of variability, should be used simply as a reference to
compare against other species but not considered repre-
sentative of the entire species in the site. We set our study
area to explore if metals from inactive mine tailings were
present in anuran communities. Having found some
pollutants in livers for anurans in the Huautla, we propose
that similar studies are needed in the more than ten active
or dormant mining areas in Morelos (SGM, 2020).

Much remains unknown about the biology, life history,
population dynamics and community structure of anurans
in southern central Mexico. Descriptive studies such as
the one we present here are an initial but important step
toward a better understanding of anuran biology and
distribution. Our work joins several other documents
from the area (Castro-Franco et al., 2006; Herrera-
Balcazar, 2014; Roa-Mata, 2017) to aid in our under-
standing of the distribution of the various anuran species
in this biologically diverse area of the country. While all
species we encountered are regarded of least concern by
IUCN (IUCN, 2023), we caution that other species or
evolutionary significant units for some species could be
facing greater threats from a variety of stressors than
acknowledged in large-scale conservation assessments.

Implications for Conservation

Mining will continue to be an important economic activity
worldwide (SE, 2020). It will also continue to be an important
environmental problem as it contributes contaminants and
dangerous residues (Xiao et al., 2020) and alters entire
ecosystems (Ali & Khan, 2018; Chen et al., 2019). The ef-
fects from metal pollution will persist at all levels of bio-
logical organization (Mussali-Galante et al., 2013b) as they
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move via food webs (Fuentes et al., 2020). While the heaviest
mining activity in the State of Morelos has ceased for the
moment (Téllez-Ramı́rez & Sánchez-Salazar, 2018), its
polluting legacy remains a threat for numerous socio-
ecosystems in this area.

Anurans play an important role in riverine food webs and
link various components in riparian ecotones (Hecnar and
M’Closkey et al., 1996; Cortés-Gomez et al., 2015). Given
their exposure to metals in the study area, they could serve as
a route of exposure for fish, birds and mammals in the region
(Ilizaliturri, 2010; Hernández-Plata et al., 2020). While our
results did not show an impact of metals on anuran richness,
abundance, or diversity among the sampled sites, we cannot
discard possible effects at lower levels of organization. It is
possible that future studies might find DNA adducts, oxi-
dative damage or metallothionein induction at the molecular
level (Hu et al., 2021). In addition, sex proportion and age
structure alterations, low reproductive success, loss of genetic
diversity, lowered fitness (Sasaki et al., 2016; Girotto et al.,
2020), or population declines should be explored. These and
higher level effects, such as alterations in energy and nutrient
cycles and food webs at the ecosystem level need to also be
addressed (Mussali-Galante et al., 2013a, 2014). Identifying
these effects will require level-specific biomarkers able to
detect biological changes that might be obscured by natural or
other anthropogenic influences. Additionally, future studies
shall consider phenotypic plasticity in anurans facing
stressors such as metal exposure and include other potential
target tissues (i.e., muscle, bone).

Despite the difficulty in carrying out above mentioned
studies, they are key to conservation efforts in the REBIOSH.
Here we have presented the first lines of evidence to un-
derstand the potential effects of metals to anurans in the area.
It is upon building blocks like this study that better con-
servation strategies for protected areas can be achieved.
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