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Introduction
Hydropower is a significant source of renewable electricity, 
with a share of 16%–17% of the total world electricity genera-
tion (Killingtveit, 2019), and currently it is the main renewable 
energy source in most countries in Asia (Vaidya et al., 2021; Li, 
Chen et  al., 2018), Europe (Alsaleh & Abdul-Rahim, 2021, 
2022), Africa (Gyimah et al., 2021; Woldeab et al., 2018), and 
South America (de Oliveira et  al., 2021; Semensatto et  al., 
2021). Furthermore, future hydropower development is pri-
marily concentrated in developing countries and emerging 
economies of Southeast Asia, South America, and Africa, also 
with the Balkans, Anatolia, and the Caucasus being additional 
centers of future dam construction (Zarfl et al., 2015).

Despite the benefits that hydropower can provide, these 
structures can also trigger substantial environmental impacts like 
the, such as water supply to communities, flood control, and 
greenhouse gases reduction (Silva & Castillo, 2021), these struc-
tures can also trigger substantial environmental impacts like the 
disruption of aquatic ecosystems, reduction of riparian biodiver-
sity, modification of stream morphology, or water quality degra-
dation, among others (Barbarossa et al., 2020; Zarfl et al., 2019). 
In the case of water quality inside the reservoir, this factor is 
affected principally by meteorological, hydrological, and geologi-
cal factors, as well as land use (Dalu & Wasserman, 2018; Marcé 
et al., 2010; Jerves-Cobo et al., 2020; Vega et al., 2018).

In the case of effects on reservoir water quality caused by 
meteorological and hydrological factors, these are described 
mainly based on geographic location. This is particularly the 
case for high and low-latitude systems also called temperate 
systems, where the four seasons have an impact on the system 
(Hwang et al., 2016; Weirich et al., 2019). Most of the studies 
carried out focus mainly on the assessment of water quality and 
its relationship with meteorological, and anthropic variables in 
eutrophic reservoirs (Winton et al., 2019). About the forego-
ing, it has been learned that nutrients and organic matter are 
responsible for most of the variation in reservoir water quality 
related to anthropogenic activities that directly impact the res-
ervoir, followed by suspended solids related to both anthropo-
genic and natural processes, but not directly with dissolved 
oxygen (Mamun et al., 2021). In the same way, water quality 
parameters exhibited a seasonal fluctuation, with predomi-
nantly higher concentrations during the dry season than the 
wet season (Woldeab et  al., 2018). Additionally, most of the 
best-documented examples of impacts—which stem from oli-
gotrophication and water quality behavior, under this trophic 
state—come from temperate catchments with important and 
carefully monitored fisheries (Winton et al., 2019). In temper-
ate systems, seasonal patterns, hydrology, and watershed mor-
phology are the main regulatory factor for the nutrient 
concentration in reservoirs (Mamun et  al., 2018; Nadarajah 
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et  al., 2019). Similarly, water quality variables, except total 
nitrogen, show vast seasonal differences as a result of high sea-
sonality in water temperature and water flow (Varol, 2020b). 
However, all those conclusions cannot be directly applied to 
tropical case studies where the hydrological regime is different 
(Winton et al., 2019). Nevertheless, based on the studies men-
tioned above, it is necessary to go deeper into studies that 
directly relate water quality to hydrological and meteorological 
factors in hydropower systems in tropical latitudes (Calamita, 
2020).

Regarding tropical systems, water quality analysis has been 
applied, and the hydrological cycle was shown to affect reser-
voir water quality (Lobato et al., 2015) directly. However, the 
application of multivariate statistical analysis in tropical reser-
voirs is limited and concentrated in eutrophic systems 
impacted by intense anthropic activities (Ling et  al., 2017; 
Marques et al., 2019).

Statistical analysis and prediction play an essential role in 
processing surface water quality time series, with tools such as 
outliers detection, normality tests, and trend detection, among 
others, granting an excellent first approach (Fu & Gan Wang, 
2012). To perform an integrated statistical analysis of water 
quality is necessary to consider hydrological, meteorological, 
and anthropic activities. Multivariate statistical analysis, such 
as principal component analysis and correlation analysis, facili-
tates integrated water quality data analysis since it allows the 
identification of factors that influence water quality (Chen 
et al., 2015; Varol, 2020a). These methods exhibit a practical 
approach to assessing and forecasting the water quality of res-
ervoirs and can be used as a tool for water quality management 
(Varol, 2020b).

Analyzing water quality is possible through dissolved oxy-
gen (DO) because is used as one of the water quality indicators 
and is the most used variable to quantify water quality and ana-
lyze water pollution. Since it plays a substantial role in aquatic 
environment characterization and shows the equilibrium 
between the processes that produce or consume oxygen in that 
environment, predicting its concentration could be advanta-
geous for the environmental custodians. Accurate predictions 
of DO concentrations can help better manage tropical ecosys-
tems. Low DO concentrations can lead to the mortality of 
aquatic organisms and the release of nutrients from the sedi-
ments, among others (Vilas et  al., 2018), which is why we 
should consider studies to predict it.

Concerning dissolved oxygen forecasting, previous studies 
have explored the prediction. Some of the statistical methods 
are multiple linear regression models, artificial neural networks, 
classification tree, principal component/factor analysis, discri-
minant analysis, and Normal hidden Markov models. They are 
used independently or jointly to predict the temporal evolution 
of water, and the results are of outstanding quality but do not 
take into account spatial and hydrological factors (Liu et  al., 
2021). Regression models are most widely used for modeling 

the stochastic behavior of DO concentrations and artificial 
intelligence (Yaseen et al., 2018). Even so, regression models 
and neural networks require more data preprocessing, complex 
relationships cannot be modeled without transforming the 
input, and non-linear relationships cannot be captured, being 
very sensitive to different scales of variables. They usually 
require larger amounts of data for model training and require a 
lot of computing resources. Finally, knowing the rules or rea-
sons why the artificial network returns those results is not usu-
ally easy and needs other analyses.

This study’s main objective is to establish relations between 
water quality and hydrometeorological variables to predict and 
estimate the dissolved oxygen concentration in a tropical reser-
voir. The results obtained using the vector autoregressive 
(VAR) with different approaches focus on critical parameters 
and be efficient in predicting.

In this same sense, it is analyzed that changes in the dis-
solved oxygen are given by water temperature, and the intensity 
of biological processes such as photosynthesis, respiration, and 
decomposition of organic matter (Rajwa-Kuligiewicz et  al., 
2015), due to changing hydrometeorological conditions (Rajwa 
et al., 2014), in the case of the reservoir it has been identified 
that DO have changes due seasonal and vertical dynamics 
(Lliev & Hadjinikolova, 2013), air temperature and nutrients 
(Dordoni et  al., 2022) and physical process the atmosphere 
(Liqoarobby et al., 2021). Following this, we hypothesized that 
in tropical reservoirs the dissolved oxygen dynamics depend on 
the air temperature, Sunshine duration, flow discharge, and 
precipitation, and internal chemical process as water tempera-
ture and decomposition of organic matter and Chemical oxy-
gen demand. Identifying the key variables will allow for a more 
accurate prediction of dissolved oxygen.

Study Area Description and Data Source
Study area

La Miel river basin is in the Central Mountain range of the 
Colombian Andes. The river reaches being studied have a 
length of 62 km and drain an area of 712 km2. In this area, the 
La Miel river has a variety of tributaries, including Tenerife, 
Salado, Manso, Moro, Pennsylvania, and Samaná, among other 
rivers.

“La Miel I” is a gravity dam located between 5°15′ N–5°35′ 
N and 74°53′ W–75°15′ on the riverbed of “La Miel” river in 
Caldas Department, Colombia, as is shown in Figure 1. 
Between 1997 and 2002, the dam was built for the primary 
purpose of hydroelectric power generation. It is 188 m high, 
giving it a storage capacity of 571 million m3 and a surface area 
of 12.2 km2, with an installed generation capacity of 396 MW 
in three turbine units. Its commercial operation began in 
December 2002. In 2010, the Guarinó diversion dam on the 
Guarinó River was opened, and the Manso diversion dam 
began operating in 2013. Both divert water into the Amaní 
Reservoir through a tunnel.
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In terms of hydrology, the watershed has a bimodal regime, 
composed of two wet and dry seasons. The average annual pre-
cipitation in the reservoir catchment is about 4,428 mm, with 
the heaviest rainfall occurring approximately in November 
with little precipitation between June and August. The dry sea-
son occurs from June to August, and the wet season—which is 
broken by dry periods—spans from May to November. 
Furthermore, the highest monthly evaporation rates occur in 
the dry season, with 165 mm/day rates, while the lowest evapo-
ration rates occur in the wet season with an average of 46 mm/
day. La Miel river basin experiences rainfall and a humid 
atmosphere throughout the year.

Hydro-meteorological and water quality data

Monthly data of water quality parameters, such as Temperature 
(T °C), pH, total suspended solids (TSS, mg/L), dissolved oxy-
gen (DO, mg/L), and conductivity (µS/cm) were measured in 
situ, at the reservoir. In addition, other monthly data were taken 
to perform laboratory analysis to measure concentrations of 
chemical oxygen demand (COD mg/L), biochemical oxygen 
demand (BOD mg/L), ammonia (NH4 mg/L), nitrite (NO2 
mg/L), nitrate (NO3 mg/L), total Kjeldahl nitrogen (TKN 
mg/L), phosphate (PO4 mg/L), Total phosphorus (TP mg/L). 
Inside the reservoir, there are five monitoring stations. These 
are distributed in two tributaries and the dam. The monitoring 

stations E4 and E6 are located in the Moro River. The moni-
toring stations E3 and E5 are in the La Miel river. Finally, the 
E7 monitoring station is at the dam, as shown in Figure 2. The 
measurements and samplings were carried out between January 
2002 and December 2015.

For the same period, seven hydrological parameters (dis-
charge, precipitation, solar brightness, evaporation, relative 
humidity, cloudiness, and air temperature) were collected, cover-
ing all basin areas. These data were obtained from hydrological 
and meteorological gaging stations. Specifically, nine monitoring 
sites were used for measuring precipitation, four sites for dis-
charge, and two sites for the other hydro-meteorological param-
eters. In addition, hydro-meteorological data were obtained from 
the DHIME website of the Institute of Hydrology, Meteorology, 
and Environmental Studies (IDEAM, acronym in Spanish).

Methods
Data treatment and analysis

Firstly, visual inspections such as scatterplots and boxplots were 
performed to test for outliers in water quality and hydro-mete-
orological time series, then anomalous values from the time 
series were identified and removed. Based on the hydrology 
described in the study area section, the time series were divided 
into the dry and rainy seasons for analysis, considering tropical 
seasonality.

Figure 1.  Location area study of “La Miel” hydropower dam and its basin.
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Descriptive statistics were calculated with mean, maximum, 
minimum, and standard deviation values to identify the order 
of magnitude of water quality time series in each season. The 
dispersion of the data sets in each monitoring station assesses 
preliminary spatial and seasonal variation.

Univariate statistical analysis

The Kolmogorov-Smirnov one-sample test assessed the 
normality of the time series and the Shapiro-Wilk test with 
a significance level of 0.05, was applied to each parameter 
at each monitoring station. These tests determine whether 
parametric or nonparametric tests are more reliable for the 
following analyses. Afterward, a Pettitt and Mann-Kendall 
nonparametric test was performed to assess the homogene-
ity of the time series and the existence of a monotonic 
trend. In the case of Pettit’s test, it identifies points where 
stepwise shifts (breaks) occur when inhomogeneity is 
extracted.

In addition, Kruskal-Wallis H tests were performed for each 
water quality parameter between the tail and mid sites and 
between the tail and dam sites.

Correspondingly, Levene and Mann-Whitney tests were 
applied to each parameter, assessing homoscedasticity and sta-
tionarity of time series between dry and wet seasons. A detrend 
of time series was applied for both, knowing that these analyses 
are affected by trends.

Multivariate statistical analysis with missing 
values

Correlation analysis was performed to measure the strength of 
the association between parameters from each monitoring site 
and between water quality parameters, hydro-meteorological 
parameters, and mixtures of water quality and hydro-meteoro-
logical parameters. The analysis was evaluated using the 
Pearson, Kendall, and Spearman correlation coefficients. The 
Pearson correlation coefficient is often used for jointly cus-
tomarily distributed data (data that follows a bivariate normal 
distribution). For the latter case, the time series is normalized 
for better test results. For non-normally distributed continu-
ous data, ordinal data, or data with correlated outliers, 
Spearman’s rank correlation and Kendall’s rank correlation can 
be used as measures of monotonic correlation (Schober et al., 
2018). 

Data imputation

Once univariate and correlation function analysis has been per-
formed on all-time series, imputation techniques are applied to 
the time series to fill in the gaps.

Due to the fact that the next analyses require continuously 
sampled data, it is necessary to obtain the estimates of the 
missing values. The data produced by this method is used to 
define the most important variables, then to build possible 
modeling scenarios, and the analysis is performed using PCA.

Figure 2.  Location of water quality monitoring and hydrometeorological gaging stations.
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In the first approximation, linear, quadratic, and cubic pad-
ding is applied. In the case of a large number of consecutive 
out-of-stocks, use the average value calculated before filling in 
the data.

Since these are univariate techniques, they do not obtain 
process variance. Hence, Multiple Imputation of Chain 
Equations (MICE) is applied as a multivariate technique, as 
this technique uses the time series of other variables to obtain 
their variances to complete the series of missing data. 
Consequently, the relationships and correlations discovered in 
the previous stages are considered to select time series to fill in 
the gaps.

In this study, the linear regression model of the MICE tech-
nique was changed by machine learning models, specifically 
Bayesian Ridge, Decision Tree Regressor, Extra Tree Regressor, 
and K-Nearest Neighbors. In addition, all search engines were 
evaluated, and the method that best preserved the variance of 
the existing data was selected.

To define the imputation technique that best fits the time 
series gaps to carry out the following statistical tests, a normal-
ity test was performed to compare the results before and after 
imputation, and it was found that all filling techniques main-
tained the results after imputation. Therefore, another valida-
tion for evaluating padding adjustments is to compare the 
mean and standard deviation of the time series before and after 
applying the imputation technique.

Principal component analysis (PCA)

This method is used to define the most representative climate 
and quality variables and to define modeling scenarios that 
allow the prediction of dissolved oxygen using the variables 
identified as significant for each site in the previous analyses. 
PAC helps you interpret your data, in this case, simplifying the 
complexities of high-dimensional data while preserving trends 
and patterns. Considering that there were at first 24 variables, 
it was necessary to determine, which of these were the variables 
that dominated the dynamics of the dissolved oxygen interac-
tion. For this, multivariate analysis is required to analyze the 
arrangement in which several interrelated quantitative depend-
ent variables describe the observations.

Its goal is to extract the vital information from the arrange-
ment, to represent it as a set of new orthogonal variables called 
principal components, and to display the pattern of similarity 
of the observations, and the variables as points (Abdi & 
Williams, 2010). To ensure that each variable contributed the 
same proportion to the analysis, the time series were normal-
ized. After that, PCA analysis was applied.

The first two components are extracted and analyzed to 
complete and define the scenarios for the prediction, consider-
ing that they are the components that contribute the most to 
the variability of the system. Since they explain more than 70% 
of the variability of the data.

Forecasting model vector autoregression (VAR)

Dissolved oxygen is the most used variable to quantify water 
quality and analyze water pollution. Since it plays a substantial 
role in aquatic environment characterization and shows the 
equilibrium between the processes that produce or consume 
oxygen in that environment.

In the previous phases are identified the main climatic and 
water quality processes that determine the OD behavior, then 
these processes are linked through univariate and multivariate 
analyses until reaching the definition of the main Spatio-
temporal processes of water quality and climatology.

Dissolved oxygen is predicted using vector autoregression 
(VAR), which generalizes univariate autoregressive models and 
allows the modeling of multivariate time series systems. Each 
variable is modeled through a linear equation, including its 
lagged values, the lagged values of the other variables, and an 
error term.

To forecast dissolved oxygen in the E3 and E7 stations, the 
VAR model is used in two scenarios. The first scenario consists 
of variables associated with the first component found in the 
PCA analysis, and the second scenario consists of variables 
associated with the first two components produced by the PCA 
analysis.

The selected time series were divided into training and test-
ing sequences; this separation was done using the last 2 years 
(of the time series) for testing and the rest for training. The 
stationarity test was again applied to the training series to eval-
uate whether all the time series were stationary. If any series is 
non-stationary, according to the test, then the time series is 
differential in this case. The Akaike Information Criterion 
(AIC) is used to determine the order of the model (Hurvich & 
Tsai, 1991) and the predictability of the developed model is 
evaluated and validated using statistical indicators such as root 
mean squared errors (RMSE) and mean absolute errors 
(MAE). All statistical analyses and methods were performed 
using Python 3.8.

Results and Discussion
Data analysis a general overview of the reservoir 
water quality

The mean and standard deviation of the Time series for the 
dam was plotted in Figure 3. These visualization techniques 
show that outliers are negligible. The order of magnitude cor-
responds to the expected value for such a system, considering 
the case of the water quality series.

In the case of water temperature, for both seasons, the lowest 
temperature was 23.4°C. However, the highest temperature var-
ied depending on the season, finding that the highest tempera-
ture was 32.8°C for the dry season, and in the wet season, the 
highest temperature was 31.6°C. It is also worth mentioning 
that the standard deviation does not exceed 1.2°C. From these 
findings, it can be inferred that water temperature depends on 
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Figure 3.  Mean and standard deviation of water quality time series dam.
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water retention. And solar radiation plays a decisive role in sur-
face water conditions and is related to dissolved oxygen.

The dissolved oxygen levels measured at the water surface 
changed depending on the season for the maximum and the min-
imum values. For the dry season, the extreme values were 3.16 
and 12.55 mg/L. For the wet season, the extreme values were 4.7 
and 13.3 mg/L. The latter can be because the organic matter load 
is low, and turbulence is present during the rainy season. These 
findings are consistent with the low chemical oxygen demand 
(COD) observed, however there were not significant differences 
between seasons (p value = .16). For chemical Oxygen Demand 
(COD) revealed values between 1.0 and 11.8 mg/L for the dry 
season, and between 1.9 and 14.8 mg/L for the wet season.

For Biochemical Oxygen Demand (BOD) values were low, 
the measurements for the dry season and between 0.4 and 
4.2 mg/L for the wet season, 0.6 and 8.9 mg/L, show higher loads 
for the rainy season, possibly due to sediment transport. All this, 
considering that COD and BOD are indicators of organic pollu-
tion of water bodies, in this case, low (Rangel-Peraza et al., 2009).

The study area has a low impact on anthropic activities. One 
possible reason that explains the observed loads can be the geo-
logical formation of the area. Finally, according to (Chapman, 
2021), the observed COD concentrations in uncontaminated 
surface water are typically below 20 mg/L. Similar values for 
BOD are less than 2 mg/L for uncontaminated water. Based on 
these criteria, it implies that the water of “La Miel” hydropower 
has a low content of biodegradable organic matter and, in gen-
eral, high dissolved oxygen levels.

The same behavior is observed for nitrogenous and phos-
phorous compounds for TKN. Measurements in the dry season 
are higher than in the rainy season. Average values between 
0.26 and 0.28 mg/L and between 0.57 and 0.78 mg/L are 
observed for the dry season. The average values for the wet 
season are between 0.18 and 0.22 mg/L and between 0.52 and 
0.57 mg/L. NO3, PO4, and TP describe similar behaviors. All 
mentioned nutrient values may be associated with good water 
quality and low nutrient content, in the reservoir, due to low 
TSS levels below 8.9 mg/L on average. Thus, it can be con-
cluded that it is an oligotrophic reservoir.

These results showed that the year’s season has a clear impact 
on water quality and DO throughout the reservoir. The latter 
indicates that the amount of rain or solar brightness that the sys-
tem receives is vital to the reservoir’s water quality and plays a vital 
role in dissolved oxygen behavior. On the other hand, the water 
quality variables that seem to have the greatest impact on dissolved 
oxygen are BOD, COD, and water temperature. In a smaller pro-
portion, the nutrient is the most influential phosphate.

Temporal variation of water quality data and 
hydrometeorology

The normality test results showed that none of the water qual-
ity time series described a normal distribution, which is why 
subsequent analyses were performed using nonparametric tests.

Four of the five monitoring stations showed changes points 
in water temperature. However, none of these changes coin-
cided with the stations. In the case of nitrogenous and phos-
phorous compounds, all their chemical forms showed change 
points, but they did not coincide between compounds. On the 
other hand, dissolved oxygen and BOD showed change points 
in all stations and coincided with four of the five stations. From 
the latter, it can be inferred that changes in the processes, that 
affect them, affect the entire system.

On the contrary, COD showed change points in three out of 
five stations, but these changes did not coincide when the 
changes occurred. In addition, conductivity values showed that 
the change point at all sites and the date the change occurred 
were consistent with other water quality parameters, which, as 
expected, were previously influenced by other variables through-
out the system. Finally, concerning water quality parameters, it 
is worth noting that the TKN did not show mean changes at 
any site. Therefore, this parameter was not affected by the pro-
cesses that occurred in the reservoir throughout the years of 
measurement. In summary, the mass variables have a point of 
change and are related to changes in dissolved oxygen: water 
temperature, nutrients, BOD, and, a lesser extent, TSS.

Changes in hydro-meteorological variables, precipitation, 
flow, cloud cover, and evaporation occurred around the first 
half of 2005 and overlapped with the changes indicated by the 
water temperature at the dam site. Again, air temperature and 
relative humidity describe a change point, they are related to 
changes in dissolved oxygen.

Monitoring point E4 for water temperature showed an 
upward trend, and other monitoring points showed a down-
ward trend.

Regarding nutrients, phosphorus compounds in all moni-
toring stations showed a downward trend, and nitrite in the 
study area also showed a downward trend. On the other hand, 
one station showed an increasing trend for nitrates (E3), and 
the rest of the monitoring site results showed a decreasing 
trend. On the contrary, ammonia showed a tendency in four 
stations (E4, E5, E6, and E7), describing an incremental ten-
dency. All this allows us to infer that, although the amount of 
nutrients is low, the form of nitrogen available in water increas-
ing is ammoniacal nitrogen, which, since it is not converted 
into nitrite to continue the nitrogen cycle, becomes a substance 
that generates pollution in the aquatic system.

COD and BOD showed decreasing trend effects in four 
stations (E4, E5, E6, and E7) and increasing trends in E3. 
However, dissolved oxygen showed an upward trend at all 
sampling stations. These results allowed us to presume that 
the surface water of the reservoir is evolving toward good 
aeration conditions. Conductivity shows similar behavior, as 
both parameters described dissolved solids. Conductivity 
shows an increasing trend in four sampling stations (E4, E5, 
E6, and E7). The latter behavior possibly occurs because this 
station is at the tail of the reservoir r(E3), so as they belong 
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to different basins, the quality characteristics come from dif-
ferent conditions.

In contrast, TSS showed a trend in four (E3, E5, E6, and 
E7) of the five sampling points, and this trend was decreasing, 
so this fact allowed us to see more clearly that the increase in 
free ions, that cause the increase in conductivity, is mainly 
related to the basin geology and not to inputs from suspended 
solids.

In brief, the trend analysis revealed that, in all monitoring 
stations, there is a decreasing trend for the parameters related 
to the nutrients of the system. Likewise, the fact that dissolved 
oxygen shows an increasing trend for all monitoring stations 
allows us to infer that the evolution of the study system tends 
to remain as a simple oligotrophic system. The water quality 
variables showed the greatest change over time, climate varia-
bles will not change significantly.

In addition, it is worth mentioning that there is no trend in 
evaporation, air temperature, flow, and precipitation. The sun’s 
brightness and relative humidity showed a downward trend. 
These variables correlate in time with some slight changes in 
dissolved oxygen.

To determine the significance of seasonality on water qual-
ity and dissolved oxygen time series. Seasonality plays a signifi-
cant role in the water quality state within reservoirs 
(Rangel-Peraza et al., 2009). The results of the Mann-Whitney 
U test denote that described seasonality, with intense periods 
every 3 months for water temperature ammonia and SST, Total 
Nitrogen, Phosphorus, BOD, and PO4, 6 months for dissolved 
oxygen DO and COD, and 12 months for conductivity. The 
Levene test results contrast with the findings made before, 
where pH, TSS, NO3, and TP were significantly different 
among seasons.

For all hydroclimate variables, the cycles show 6-month and 
1-year cycles, which vary between dry and rainy seasons. This 
shows its main relationship with nutrients and TSS.

At this point, it was possible to establish to temporally the 
processes affecting dissolved oxygen fluctuations. Considering 
BOD, COD, water temperature, air temperature, solar bright-
ness, relative humidity, and precipitation are key parameters of 
DO.

Spatial variation of water quality e 
hydrometeorological data

The results of the Kruskal-Wallis H-test, spatial analysis con-
sidering the arms of the reservoir. Significant differences were 
measured in DO, conductivity, NO3, TSS, and water tempera-
ture for the principal arm between stations E3 and E5. 
Likewise, significant differences were measured on the other 
arm of the reservoir between stations E4 and E6 for DO, TP, 
and Water Temperature. At last, tail monitoring points were 
assessed at the dam site. It was come to know that: between 
stations E3 and E7, significant differences in conductivity, 
NO3, pH, TSS, and WT were observed. On the other hand, 

between stations E4 and E7, significant differences in ammo-
nia, DO, TP, and water temperature were noted. These findings 
confirm that Water Temperature is significantly different 
among all monitoring stations. Furthermore, conductivity, 
NO3, and TSS are significantly different through the “La Miel 
river” arm and dam site, as DO and TP are significantly differ-
ent through the “Moro river” arm.

The results of the Kruskal-Wallis H-test, hydroclimatologi-
cal spatial analysis considering the arms of the reservoir. 
Significant differences were not founded in the flow discharge, 
precipitation, solar brightness, humidity, and air temperature 
for the principal arm between stations E3 and E5. Moreover, 
no significant differences were measured on the other arm of 
the reservoir between stations E4 and E6 for all hydroclimatic 
variables. Tail monitoring points were assessed at the dam site. 
Between stations E3 and E7, significant differences in precipi-
tation. And between E4 and E7 flow discharge is significantly 
different.

Using this technique, it was determined that the arm (E3) 
and the dam (E7) were the sites that better represented changes 
in water quality and DO. This implies that spatially important 
processes occur at E3 y E8.

Correlation of water quality and 
hydrometeorological seasonal data

In previous analyses, attempts were made to interpret the time 
series results and analyze spatial-temporal behavior that was 
important to predicting dissolved oxygen. A correlation analy-
sis was performed to determine the direct relationship between 
water quality and hydro-meteorological data. Relationships 
which not demonstrated in the previous steps were done using 
this statistical technique, and for this analysis, the series was 
split between dry or wet seasons.

To gain an initial understanding of the complete monthly 
dataset relationships, Pearson, Kendall, and Spearman’s meth-
ods were applied. Considering that the Spearman test is an 
appropriate tool for this type of assessment, as it targets non-
normal data, allowing us to identify variables with better asso-
ciations between them. The wet and dry season correlation 
matrices for all monitoring sites were produced.

For the analysis of the results, the correlations discovered 
between absolute values of 0.0 and 0.39 were considered weak 
or negligible. In contrast, the correlation between absolute val-
ues .4 and 1 is considered moderate or intense so the latter will 
be the correlation considered in the following analysis (Schober 
et al., 2018).

The study revealed that whether it is the dry season or 
rainy season, the variables with the highest correlation coef-
ficient are water quality variables among themselves. So then, 
there is a specific relationship between hydro-meteorological 
variables and water quality variables. In addition, the correla-
tion in the dry season is more significant than that in the 
rainy season.
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Moving on to a more specific analysis of the relationship 
between water quality and hydrometeorological variables, it 
was found that the most recurrent relationship in the sampling 
sites was between precipitation and conductivity for the dry 
and wet seasons, lacking only at the E3 site. This relationship is 
also noticed by Ricardo et al. (2016) and Zhang et al. (2018), 
described as a possible consequence of runoff and soil type 
around the reservoir. Precipitation is also associated with nitro-
gen and phosphorus compounds, especially during the dry sea-
son, as studied by Branco et  al. (2019), showing that lower 
precipitation leads to increased nutrient concentrations due to 
lower dilution. In the same way, precipitation and air tempera-
ture were correlated with the water temperature at sites E6 and 
E7 behavior. These can be explained because these sites have 
the lowest surface water movement and the largest surface area 
in contact with the atmosphere. Lastly, another striking corre-
lation was the one between solar brightness and PO4 found for 
the dry season of stations E3 and E5, a link that was also found 
in Li et al. (2019), Yang et al. (2021) highlighting the impact of 
solar radiation on phosphorus concentration in continental 
water systems.

The results described in the previous analyses showed cor-
relations between water quality variables and hydro-meteoro-
logical variables. It asserts at this point and with these statistical 
methods and taking into consideration seasonal variations that 
the hydro-meteorological variables to be considered for accu-
rate predictions of dissolved oxygen data are precipitation, flow 
discharge, relative humidity, air temperature, and solar bright-
ness. And water quality parameters: water temperature, BOD, 
COD, and PO4.

Data imputation, f illing the water quality series 
with missing data

The results of the comparison of the different gap-filling 
methods at the five stations are presented in Table 1. These 
results are shown, where the best is near zero.

Comparing the means between the initial series and the 
filled series, 0.06 for linear regression, 0.14 for Bayesian regres-
sion, 0.38 for ExtraTree regression, 0.45 for K-Nearest 
Neighbors, and 0.5 for Decision Tree regression. Shows better 
results for linear regression and Bayesian.

Comparing the standard deviation values between the ini-
tial series and the filled series, it is 1.34 for linear regression, 
1.31 for Bayesian regression, 1.17 for Extra Tree regression, 
1.21 for K-Nearest Neighbors, and 0.3 for Decision Tree 
regression. Shows better results for Decision Trees and Extra 
Trees.

Evaluation of the results of imputation techniques showed 
that MICE techniques estimated by machine learning meth-
ods achieved better results than mean, linear interpolation, or 
linear regression methods. And the estimator A Decision Tree 
regression was found to be a better estimator for the imputa-
tion process for missing data on water quality according to the 
metrics.

Principal component analysis (PCA) of water 
quality e hydrometeorological data

The results of applying the PCA in all water quality sampling 
stations revealed that it is possible to explain more than 70% of 
the accumulated variance of the data with only six principal 
components, which allowed for reducing the dimensionality 
from nine selected in the previous steps to six dimensions.

In addition, it was learned that the more significant variance 
at each monitoring point of the time series is due to the first 
principal component, which changed as a function of the loca-
tion of the station in the reservoir, showing that for E3 (First 
tributary La Miel river), which is the most upstream monitor-
ing point of the reservoir, the first principal component was 
composed of hydro-meteorological variables like precipitation, 
flow, and air temperature, for points E4 (First tributary Moro 
river) and E5 (second tributary La Miel river) The first compo-
nent is a mixture of climate and water quality variables, such as 
precipitation, air temperature, PO4, and water temperature.

On the other hand, for points E6 (Second tributary Moro 
River) and E7 (dam), the first principal component consists of 
water quality variables such as PO4, NO3, BOD, COD, and 
water temperature, as shown for stations E3 and E7 in Figure 
4 Where, which displays the differences.

These results allow us to infer that the main drivers of the 
processes change depending on the location within the dam, 
being the upstream reservoir processes driven by meteorologi-
cal variables, and as the location of the processes approaches 

Table 1.  Delta Mean and Delta Standard Deviation of Imputation Techniques for Each Station.

Method Mean delta Standard deviation delta

  E3 E4 E5 E6 E7 E3 E4 E5 E6 E7

Linear 0.9 0.11 0.3 0.4 0.2 1.24 1.64 1.1 1.46 1.28

Bayesian 0.1 0.18 0.25 0.04 0.14 1.34 1.66 0.89 1.48 1.18

KNN 0.56 0.5 0.5 0.26 0.45 1.16 1.45 0.95 1.37 1.13

Extra Tree 0.22 0.24 0.16 0.33 0.97 0.98 1.42 1.03 1.41 0.99

DTree 0.8 0.29 0.21 0.5 0.7 0.59 0.46 0.33 0.26 0.33
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the dam point, water quality variables take center stage as the 
main drivers of the processes in the reservoir.

The results also show that, for all monitoring stations, the 
water quality variables associated with the first or second princi-
pal component, depending on the location of the monitoring 
point in the reservoir, are PO4, BOD, COD, and NO3. Likewise, 
precipitation and currents at the Samaná sampling were the 
hydro-meteorological parameters that had the most significant 
impact on the first or second principal component, depending on 
the location of the monitoring points in the reservoir. Another 
important aspect highlighted from the PCA results is the TSS 
itself, as a single principal component. Therefore, it can be con-
cluded that the variance associated with SST is not related to any 
other climatic or water quality variables. Finally, it is observed 
(Figure 4) that the decrease in dissolved oxygen depends on the 
parameters of the first component for E3 and E7.

Dissolved oxygen prediction model based on vector 
autoregressive (VAR) technique

To perform VAR analysis to forecast dissolved oxygen in monitor-
ing sites, E3 and E7, the PCA results were used as input to create 
the predictive model case, knowing that, at this point, all previous 
analyses allowed us to understand which variables were the main 
drivers of the reservoir process in Spatio-temporal context.

Two cases were implemented for the two monitoring sites, 
applying the variables from the first component of the PCA 
analysis and, in the other case, applying the variables from the 
first and second components. For site E3, Precipitation and 
Flow for Case 1 were selected, and for Case 2, the variables 
mentioned and BOD, COD, and PO4 were selected. A site E7, 
the water temperature, BOD, COD, and PO4 was selected for 
case 1, and for case 2, the variables mentioned as well as pre-
cipitation and air temperature were selected. Finally, after 
selecting the time series, splitting them into training and test 

data, leaving 5 years as test data and the rest as training data, 
the optimal model order was selected using the Akaike 
Information Criterion (AIC) by equating the maximum lag 
order to 14, to select the right order of the VAR model, we 
iteratively fit increasing orders of VAR model and pick the 
order that gives a model with least AIC, as is shown in Table 2.

The Table 3 shows the performance metrics for the two 
cases at each site. It is shown that for station E3, and its case 1, 
an RMSE of 1.03 was found. For case 2, an RMSE of 2.04 was 

Figure 4.  PCA circle plot for stations E3 and E7.

Table 2.  Performance Indicators of VAR Predictive Model for Each 
Case.

Case 1 Case 2 Case 1 Case 2

0 17.06 20.58 5.104 13.29

1 16.79 20.65 5.274 13.35

2 16.23 18.94 4.438 12.09

3 16.3 19.22 4.53 12.29

4 16.0 18.57 4.348 11.9

5 15.98 18.71 4.553 12.24

6 15.82 18.52 4.402 12.03

7 15.76 18.44 4.583 12.06

8 15.6 18.12 4.489 11.79

9 15.63 18.27 4.403 11.19

10 15.48* 18.01 4.411 10.49

11 15.56 18.15 4.3 10.17

12 15.67 18.05 3.806* 8.494*

13 15.63 17.79* 4.009 9.088

14 15.67 17.9 3.936 9.432
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obtained, which is why it is considered that both models had a 
good performance in predicting dissolved oxygen. However, it 
could be inferred that for this station, a model based only on 
hydro-meteorological variables obtains a better approximation 
than a model where, in addition to the hydro-meteorological 
variables, water quality variables are included. Additionally, 
monitoring site E7, Table 3. shows that for case 1, an RMSE of 
0.84 was found, and for case 2, an RMSE of 2.09 was obtained.

As a result, although the metric results show that the model 
produces a good approximation, in this monitoring site, there 
is a significant difference between the performance metrics, 
indicating that Case 1 provides better prediction results than 
Case 2.

The behavior described by the performance metrics is also 
reflected in the graphs as presented in Figure 5, where for the 
monitoring site E3, the two cases present a similar forecast 
between them with minor differences. In case 2, the model bet-
ter reproduces the variability of the system because it has more 
input variables but fails to improve the forecast compared to 
the results of case 1. Conversely, for monitoring site E7, it is 
observed that case 1 presents a better fit than case 2, showing 
for case 2 that the forecast values are above the expected mean 
values. Even though it well reproduces the variability of the 
series, in case 1, the variability also approaches the expected 
variability and, at the same time, yields values that are within 
what is expected.

The model evaluation demonstrated that DO can be pre-
dicted as a function of precipitation and flow discharge in the 
E3 station and terms of air temperature, water temperature 
BOD, COD, and PO4 in the E7 station.

Discussion
This study used various statistical tests to analyze water quality 
and hydroclimatological aspects and to forecast dissolved oxy-
gen on a monthly basis. Since the selection of an appropriate 
set of input variables from all possible input variables during 
The VAR model development is important for obtaining a 
high-quality model. Many of the described methods for input 
variable selection are based on heuristics, expert knowledge, 
statistical analysis, or a combination of these. However, 
although there is a well-justified need to consider input 

variable selection carefully, there is currently no consensus on 
how to accomplish this task (Ranković et al., 2012). For this 
reason, it is imperative to correctly predict using multivariate 
statistical techniques and to assess spatiotemporal water quality 
and hydroclimate variables to select them appropriately.

In this study, exploratory data analysis was used to aid what 
variables should be used. Doing so, allowed a better under-
standing of the underlying process occurring in the basin that 
affects reservoir water quality and DO.

The input variables analyzed in this paper were: 
Temperature, pH, total suspended solids, dissolved oxygen, 
conductivity, chemical oxygen demand, biochemical oxygen 
demand, ammonia, nitrite, nitrate, total Kjeldahl nitrogen, 
phosphate, Total phosphorus, as well discharge, precipitation, 
solar brightness, evaporation, relative humidity, cloudiness, 
and air temperature. The number of total variables was 20 for 
five water quality stations in the reservoir. Throughout the 
process, variables were refined, and concluding that only six 
were the most appropriate for the prediction of dissolved oxy-
gen and that a monthly period in two (E3 and E7) of the five 
stations in the reservoir could well represent the spatial and 
temporal dynamics of dissolved oxygen in the tropical reser-
voir. It was concluded that DO can be predicted as a function 
of precipitation, flow, air temperature, water temperature, 
BOD, COD, and PO4.

Furthermore, as mentioned in Chen et al. (2020) and Yaseen 
et al. (2018), while the selection of variable key parameters for 
prediction is essential, there is clearly a need for reservoir zoning 
in addition to this. The latter allows refinements to improve the 
performance of metrics and forecasts, as shown in case 2, where 
the performance did not improve. Identifying two dissolved 
oxygen dynamics related to the location of the reservoir stations, 
one in the tail E3 and the other in the reservoir vessel E7.

Other studies have found that water temperature, photo-
synthesis, respiration, and BOD (Rajwa et  al., 2014; Rajwa-
Kuligiewicz et  al., 2015) seasonal variation (Lliev & 
Hadjinikolova, 2013), air temperature and nutrition (Dordoni 
et al., 2022), are variables that affect dissolved oxygen.

Referring to the original hypothesis, it was found that vari-
ables such as water temperature, organic matter decomposition, 
and COD were indeed important succeeded by phosphates to 

Table 3.  Performance Indicators of VAR Predictive Model for Each Case.

Case 1 station E3 Case 2 station E3 Case 1 station E7 Case 2 station E7

Forecast accuracy DO Forecast accuracy DO Forecast accuracy DO Forecast accuracy DO

MAPE 0.10 MAPE 0.21 MAPE 0.08 MAPE 0.21

ME 0.11 ME 0.52 ME 0.51 ME 0.32

MAE 0.79 MAE 1.66 MAE 0.68 MAE 1.69

MPE 0.03 MPE 0.04 MPE 0.06 MPE 0.03

RMSE 1.03 RMSE 2.04 RMSE 0.84 RMSE 2.09
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changes in dissolved oxygen concentrations. And that these are 
the correct inputs for the prediction of dissolved oxygen in a 
tropical reservoir. However, nitrogen compounds, conductivity, 
pH, and suspended solids did not show much correlation in 
this investigation.

It was previously known that different climatic conditions 
and temperatures were the basis for determining DO dynam-
ics, and this study also involved precipitation and flow dis-
charge as fundamental variables for predicting DO.

Although climatic variables and chemical interactions 
should indeed be considered together for the prediction of 
dissolved oxygen, they should also be explored for future 
work, other variables such as water levels, wind speed and 
direction, relationships with geologic conditions, soils, and 
biological processes, since in this study due to the scarcity of 
information in these areas it was not possible to carry them 
out. Likewise, consider changes at finer scales than monthly, 
for example, consider the dynamics of oxygen at an hourly 
resolution.

Compared to current models, the power of VAR is a sys-
tematic yet flexible approach to capturing complex real-world 
behavior and exhibits better predictive performance as well as 
the ability to capture the interwoven dynamics of time-series 
data (Aptech, 2021). For the VAR model, splitting the series 
into two groups, was sufficient to obtain high prediction rates. 

In this study, it was evident that the VAR statistical tool has 
great potential, although its use is incipient in water quality 
analysis in reservoirs. For this reason, more research on this 
topic should be done. The results of this study can be compared 
with the results reported in the literature.

Future works will be important not only to the link between 
parameters but taking into consideration other statistical 
methods and do a comparison between knowing the Spatio-
temporal processes that affect dissolved oxygen behavior in 
tropical reservoirs.

After all, accurate prediction of dissolved oxygen may pro-
vide a cost-effective solution to prevent water quality crises in a 
tropical reservoir. The models and methods presented here can 
be applied to dissolved oxygen prediction in other tropical eco-
systems such as lakes and rivers.

Conclusion
This study applied a methodology that allows a determination 
of the behavior of hydro-meteorological and water quality vari-
ables in tropical reservoirs and establishes the relationship 
between water quality parameters and hydrometeorology to 
predict dissolved oxygen. Statistical tests and analysis showed a 
statistically significant influence of hydro-meteorological vari-
ables like precipitation, flow discharge, relative humidity, solar 
brightness, and air temperature over water quality parameters, 

Figure 5.  Case 1 and Case 2 VAR models for stations E3 and E7.
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especially with nutrients, and dissolved oxygen. These analyses 
also showed that, as the relationship between water quality and 
hydro-meteorological variables varied from site to site, there-
fore the behavior of water quality parameters is influenced by 
the area within the reservoir.

When applied to water quality data analysis and prediction, 
nonparametric procedures have several advantages over paramet-
ric procedures. Some of these advantages are: (1) prior transfor-
mations are not required, even when approximate normality 
could be achieved, (2) normality for water-quality data is not 
required, (3) comparisons are made between central values such 
as the median rather than the mean; and finally, (4) data below 
the detection limit can be incorporated without fabrication of 
values or bias. So, the information contained in less-than-values is 
accurately used, not misrepresenting the state of that information. 
Furthermore, its ability to handle missing values, outliers, and its 
capacity to update, makes it ideal for prediction.

Descriptive statistical analyses are performed by separating the 
time series according to the climatic seasons showing significant 
differences between the dry and wet seasons. Similarly, the correla-
tion analysis results of each season show that the reservoir is 
affected by seasons, and the influence of meteorological variables 
in the dry season is more evident than that in the rainy season. 
Therefore, this funding increases the metrics for DO predictions.

Only the variables that are part of the first principal compo-
nent are recommended for DO forecasting. The combination 
of more components creates noise that reduces the quality of 
forecasting.

Due to the spatial and temporal heterogeneity of water 
quality in a tropical reservoir, water quality monitoring should 
be designed to capture the temporal dynamics close to dams’ 
inlets to predict dam water quality. This finding suggests that 
designing and maintaining effective reservoir water quality 
monitoring is key to sustainable management and prediction.

It is essential to begin analyzing and modeling the environ-
mental impacts of large dams more holistically to better inform 
stakeholders and decision-makers on the balance between 
exploiting hydropower potential and maintaining critical natu-
ral resources.

Author Contributions
A.G.J.A designed this study, have made a substantial contribu-
tion to the concept of the article; analysis, or interpretation of 
data for the article; A.D.C. wrote the original draft, analysis, or 
interpretation of data for the article; E.V.J.A Revised it criti-
cally for important intellectual content; approved the version to 
be published; M.J.L.J and P.E.C.C reviewed the several ver-
sions of the manuscript.

Data Availability Statement
The datasets generated during and/or analyzed during the cur-
rent study are available from the corresponding author on rea-
sonable request.

Declaration of Conflicting Interests
The author(s) declared no potential conflicts of interest with 
respect to the research, authorship, and/or publication of this 
article.

Funding
The author(s) received no financial support for the research, 
authorship, and/or publication of this article.

ORCID iDs
Alzate-Gómez Juliana Andrea  https://orcid.org/0000 
-0002-9029-6989
Montoya-Jaramillo Luis Javier  https://orcid.org/0000 
-0002-5832-2219

References
Abdi, H., & Williams, L. J. (2010). Principal component analysis. Wiley Interdisciplin-

ary Reviews: Computational Statistics, 2, 433–459.
Alsaleh, M., & Abdul-Rahim, A. (2022). Moving toward sustainable environment: 

The effects of hydropower industry on water quality in EU economies. Energy & 
Environment, 33, 1304–1325. https://doi.org/10.1177/0958305x211039452

Alsaleh, M., & Abdul-Rahim, A. S. (2021). Do global competitiveness factors effects 
the industry sustainability practices? Evidence from European hydropower 
industry. Journal of Cleaner Production, 310, 127492. https://doi.org/10.1016/j.
jclepro.2021.127492

Aptech. (2021). https://www.aptech.com/blog/introduction-to-the-fundamentals-of 
-vector-autoregressive-models/

Barbarossa, V., Schmitt, R. J. P., Huijbregts, M. A. J., Zarfl, C., King, H., & Schipper, 
A. M. (2020). Impacts of current and future large dams on the geographic range 
connectivity of freshwater fish worldwide. Proceedings of the National Academy of 
Sciences of the United States of America, 117(7), 3648–3655. https://doi.
org/10.1073/pnas.1912776117

Branco, C. W. C., Leal, J. J. F., Huszar, V. L. D. M., Farias, D. D. S., Saint’Pierre, T. 
D., Sousa-Filho, I. F., de Palermo, E. F. D. A., Guarino, A. W. S., Gomes, A. 
R., & Kozlowsky-Suzuki, B. (2019). New lake in a changing world: The con-
struction and filling of a small hydropower reservoir in the tropics (Rio de 
Janeiro, Brazil). Environmental Science and Pollution Research, 26(35), 36007–
36022. https://doi.org/10.1007/s11356-019-06665-y

Calamita, E. (2020). Modelling the effects of large dams on water quality in tropical rivers. 
ETH Zürich.

Chapman, D. (2021). Water quality assessments. CRC Press.
Chen, K., Chen, H., Zhou, C., Huang, Y., Qi, X., Shen, R., Liu, F., Zuo, M., Zou, X., 

Wang, J., Zhang, Y., Chen, D., Chen, X., Deng, Y., & Ren, H. (2020). Compar-
ative analysis of surface water quality prediction performance and identification 
of key water parameters using different machine learning models based on big 
data. Water Research, 171, 115454. https://doi.org/10.1016/j.watres.2019.115454

Chen, P., Li, L., & Zhang, H. (2015). Spatio-temporal variations and source appor-
tionment of water pollution in Danjiangkou Reservoir Basin, Central China. 
Water, 7(12), 2591–2611. https://doi.org/10.3390/w7062591

Dalu, T., & Wasserman, R. J. (2018). Cyanobacteria dynamics in a small tropical res-
ervoir: Understanding spatio-temporal variability and influence of environmen-
tal variables. The Science of the Total Environment, 643, 835–841. https://doi.
org/10.1016/j.scitotenv.2018.06.256

de Oliveira, K. L., Ramos, R. L., Oliveira, S. C., & Christofaro, C. (2021). Spatial 
variability of surface water quality in a large Brazilian semiarid reservoir and its 
main tributaries. Environmental Monitoring and Assessment, 193(7), 1–15. https://
doi.org/10.1007/s10661-021-09194-9

Dordoni, M., Seewald, M., Rinke, K., Schmidmeier, J., & Barth, J. A. C. (2022). 
Novel evaluations of sources and sinks of dissolved oxygen via stable isotopes in 
lentic water bodies. The Science of the Total Environment, 838, 156541. https://doi.
org/10.1016/j.scitotenv.2022.156541

Fu, L., & Gan Wang, Y. (2012). Statistical tools for analyzing water quality data. Water 
quality monitoring and assessment. (pp. 143–168). InTech Open. 

Gyimah, R. A. A., Gyamfi, C., Anornu, G. K., Karikari, A. Y., & Tsyawo, F. W. 
(2021). Multivariate statistical analysis of water quality of the Densu River, 
Ghana. International Journal of River Basin Management, 19(2), 189–199. https://
doi.org/10.1080/15715124.2020.1803337

Downloaded From: https://staging.bioone.org/journals/Air,-Soil-and-Water-Research on 13 Jan 2025
Terms of Use: https://staging.bioone.org/terms-of-use

https://orcid.org/0000-0002-9029-6989
https://orcid.org/0000-0002-9029-6989
https://orcid.org/0000-0002-5832-2219
https://orcid.org/0000-0002-5832-2219
https://doi.org/10.1177/0958305x211039452
https://doi.org/10.1016/j.jclepro.2021.127492
https://doi.org/10.1016/j.jclepro.2021.127492
https://www.aptech.com/blog/introduction-to-the-fundamentals-of
-vector-autoregressive-models/
https://www.aptech.com/blog/introduction-to-the-fundamentals-of
-vector-autoregressive-models/
https://doi.org/10.1073/pnas.1912776117
https://doi.org/10.1073/pnas.1912776117
https://doi.org/10.1007/s11356-019-06665-y
https://doi.org/10.1016/j.watres.2019.115454
https://doi.org/10.3390/w7062591
https://doi.org/10.1016/j.scitotenv.2018.06.256
https://doi.org/10.1016/j.scitotenv.2018.06.256
https://doi.org/10.1007/s10661-021-09194-9
https://doi.org/10.1007/s10661-021-09194-9
https://doi.org/10.1016/j.scitotenv.2022.156541
https://doi.org/10.1016/j.scitotenv.2022.156541
https://doi.org/10.1080/15715124.2020.1803337
https://doi.org/10.1080/15715124.2020.1803337


14	 Air, Soil and Water Research ﻿

Hurvich, C. M., & Tsai, C. L. (1991). Bias of the corrected AIC criterion for underfit-
ted regression and time series models. Biometrika, 78(3), 499–509. https://doi.
org/10.1093/biomet/78.3.499

Hwang, S.-J., Kim, K., Park, C., Seo, W., Choi, B.-G., Eum, H. S., Park, M.-H., Noh, 
H. R., Sim, Y. B., & Shin, J.-K. (2016). Hydro-meteorological effects on water 
quality variability in Paldang Reservoir, confluent area of the South-Han River-
North-Han River-Gyeongan Stream, Korea. Korean Journal of Ecology and Envi-
ronment, 49(4), 354–374. https://doi.org/10.11614/ksl.2016.49.4.354

Jerves-Cobo, R., Forio, M. A. E., Lock, K., Van Butsel, J., Pauta, G., Cisneros, F., 
Nopens, I., & Goethals, P. L. M. (2020). Biological water quality in tropical riv-
ers during dry and rainy seasons: A model-based analysis. Ecological Indicators, 
108, 105769. https://doi.org/10.1016/j.ecolind.2019.105769

Killingtveit, Å. (2019). Hydropower. In T. Letcher (Ed.), Managing Global Warming 
(pp. 265–315). Academic Press.

Ling, T. Y., Gerunsin, N., Soo, C. L., Nyanti, L., Sim, S. F., & Grinang, J. (2017). 
Seasonal changes and spatial variation in water quality of a large young tropical 
reservoir and its downstream river. Journal of Chemistry, 2017, 1–16. https://doi.
org/10.1155/2017/8153246

Liqoarobby, R., Suparman, S., & Fadilah, Y. K., (2021). Aqueous systems of dissolved 
oxygen in reservoir. E3S Web of Conferences, 249, 03015. https://doi.org/10.1051/
e3sconf/202124903015

Liu, C., Pan, C., Chang, Y., & Luo, M. (2021). An integrated autoregressive model for 
predicting water quality dynamics and its application in Yongding River. Ecologi-
cal Indicators, 133, 108354.  https://doi.org/10.1016/j.ecolind.2021.108354

Li, X., Guo, M., Duan, X., Zhao, J., Hua, Y., Zhou, Y., Liu, G., & Dionysiou, D. D. 
(2019). Distribution of organic phosphorus species in sediment profiles of shal-
low lakes and its effect on photo-release of phosphate during sediment resus-
pension. Environment International, 130, 104916. https://doi.org/10.1016/j.
envint.2019.104916

Li, X. Z., Chen, Z. J., Fan, X. C., & Cheng, Z. J. (2018). Hydropower development 
situation and prospects in China. Renewable and Sustainable Energy Reviews, 82, 
232–239. https://doi.org/10.1016/j.rser.2017.08.090 (August 2017.

Lliev, I., & Hadjinikolova, L. (2013). Seasonal and vertical dynamics of the water tem-
perature and oxygen content in Kardzhali reservoir. Agricultural Science and Tech-
nology. https://www.researchgate.net/publication/305781610

Lobato, T. C., Hauser-Davis, R. A., Oliveira, T. F., Silveira, A. M., Silva, H. A., Tavares, 
M. R., & Saraiva, A. C. (2015). Construction of a novel water quality index and qual-
ity indicator for reservoir water quality evaluation: A case study in the Amazon region. 
Hydrology Journal, 522, 674–683. https://doi.org/10.1016/j.jhydrol.2015.01.021

Mamun, M., Kim, J. Y., & An, K. G. (2021). Multivariate statistical analysis of water 
quality and trophic state in an artificial dam reservoir. Water, 13(2), 186. https://
doi.org/10.3390/w13020186

Mamun, M., Lee, S. J., & An, K. G. (2018). Temporal and spatial variation of nutri-
ents, suspended solids, and chlorophyll in Yeongsan watershed. Journal of Asia-
Pacific Biodiversity, 11(2), 206–216. https://doi.org/10.1016/j.japb.2018.02.006

Marcé, R., Rodríguez-Arias, M. À., García, J. C., & Armengol, J. (2010). El Niño South-
ern Oscillation and climate trends impact reservoir water quality. Global Change 
Biology, 16(10), 2857–2865. https://doi.org/10.1111/j.1365-2486.2010.02163.x

Marques, É. T., Gunkel, G., & Sobral, M. C. (2019). Management of tropical river 
basins and reservoirs under water stress: Experiences from northeast Brazil. 
Environments, 6(6), 62. https://doi.org/10.3390/environments6060062

Nadarajah, S., Wijenayake, W. M. H. K., & Amarasinghe, U. S. (2019). Influence of 
hydrology on water quality and trophic state of irrigation reservoirs in Sri Lanka. 
Lakes and Reservoirs: Research and Management, 24(3), 287–298. https://doi.
org/10.1111/lre.12283

Rajwa, A., Bialik, R. J., Karpiński, M., & Luks, B. (2014). Dissolved oxygen in rivers: 
Concepts and measuring techniques. In R. Bialik, M. Majdański, & M. Moska-
lik (Eds.), Achievements (pp. 337–350). Springer.

Rajwa-Kuligiewicz, A., Bialik, R. J., & Rowiński, P. M. (2015). Dissolved oxygen and water 
temperature dynamics in lowland rivers over various timescales. Journal of Hydrology 
and Hydromechanics, 63(4), 353–363. https://doi.org/10.1515/johh-2015-0041

Rangel-Peraza, J. G., De Anda, J., González-Farias, F., & Erickson, D. (2009). Statis-
tical assessment of water quality seasonality in large tropical reservoirs. Lakes and 
Reservoirs: Research and Management, 14(4), 315–323. https://doi.
org/10.1111/j.1440-1770.2009.00412.x

Ranković, V., Radulović, J., Radojević, I., Ostojić, A., & Čomić, L. (2012). Prediction of 
dissolved oxygen in reservoirs using adaptive network-based fuzzy inference 

system. Journal of Hydroinformatics, 14(1), 167–179. https://doi.org/10.2166/
hydro.2011.084

Ricardo, P., Medeiros, P., Cavalcante, G. H., Brandini, N., & Knoppers, B. A. (2016). 
Inter-annual variability on the water quality in the lower São Francisco River 
(NE-Brazil). Acta Limnologica Brasiliensia, 28, 5. https://doi.org/10.1590/
s2179-975x3515

Schober, P., Boer, C., & Schwarte, L. A. (2018). Correlation coefficients: Appropri-
ate use and interpretation. Anesthesia-Analgesia Research Society, 126(5), 
1763–1768.

Semensatto, D., Labuto, G., Zorzal-Almeida, S., & McRae, D. V. (2021). Spatio-
temporal changes in water quality in the Guarapiranga reservoir (São Paulo, 
Brazil): Insights from a long-term monitoring data series. Environmental 
Monitoring and Assessment, 193(7), 1–15. https://doi.org/10.1007/
s10661-021-09167-y

Silva, S. N., & Castillo, J. Á. D. (2021). An approach of the hydropower: Advantages 
and impacts. A review. Journal of Energy Research and Reviews, June, 10–20. 
https://doi.org/10.9734/jenrr/2021/v8i130201 del.

Vaidya, R. A., Molden, D. J., Shrestha, A. B., Wagle, N., & Tortajada, C. (2021). The 
role of hydropower in South Asia’s energy future. International Journal of Water 
Resources Development, 37(3), 367–391. https://doi.org/10.1080/07900627.2021.
1875809

Varol, M. (2020a). Spatio-temporal changes in surface water quality and sediment 
phosphorus content of a large reservoir in Turkey. Environmental Pollution, 259, 
113860. https://doi.org/10.1016/j.envpol.2019.113860

Varol, M. (2020b). Use of water quality index and multivariate statistical methods for 
the evaluation of water quality of a stream affected by multiple stressors: A case 
study. Environmental Pollution, 266, 115417. https://doi.org/10.1016/j.
envpol.2020.115417

Vega, A. S., Lizama, K., & Pastén, P. A. (2018). Water quality: Trends and challenges. 
In G. Donoso (Ed.), Water policy in Chile (pp. 25–51). Springer.

Vilas, M. P., Marti, C. L., Oldham, C. E., & Hipsey, M. R. (2018). Macrophyte-
induced thermal stratification in a shallow urban lake promotes conditions suit-
able for nitrogen-fixing cyanobacteria. Hydrobiologia, 806(1), 411–426. https://
doi.org/10.1007/s10750-017-3376-z

Weirich, C. A., Robertson, D. M., & Miller, T. R. (2019). Physical, biogeochemical, 
and meteorological factors responsible for interannual changes in cyanobacterial 
community composition and biovolume over two decades in a eutrophic lake. 
Hydrobiologia, 828(1), 165–182. https://doi.org/10.1007/s10750-018-3810-x

Winton, R. S., Calamita, E., & Wehrli, B. (2019). Reviews and syntheses: Dams, 
water quality and tropical reservoir stratification. Biogeosciences, 16(8), 1657–
1671. https://doi.org/10.5194/bg-16-1657-2019

Woldeab, B., Beyene, A., Ambelu, A., Buffam, I., & Mereta, S. T. (2018). Seasonal 
and spatial variation of reservoir water quality in the southwest of Ethiopia. 
Environmental Monitoring and Assessment, 190(3), 163. https://doi.org/10.1007/
s10661-018-6527-4

Yang, X., Yuan, J., Yue, F.-J., Li, S.-L., Wang, B., Mohinuzzaman, M., Liu, Y., Senesi, 
N., Lao, X., Li, L., Liu, C.-Q., Ellam, R. M., Vione, D., & Mostofa, K. M. G. 
(2021). New insights into mechanisms of sunlight- and dark-mediated high-tem-
perature accelerated diurnal production-degradation of fluorescent DOM in lake 
waters. Science of The Total Environment, 760, 143377. https://doi.org/10.1016/j.
scitotenv.2020.143377

Yaseen, Z., Ehteram, M., Sharafati, A., Shahid, S., Al-Ansari, N., & El-Shafie, A. 
(2018). The integration of nature-inspired algorithms with least square support 
vector regression models: Application to modeling river dissolved oxygen con-
centration. Water, 10(9), 1124. https://doi.org/10.3390/w10091124

Zarfl, C., Berlekamp, J., He, F., Jähnig, S. C., Darwall, W., & Tockner, K. (2019). 
Future large hydropower dams impact global freshwater megafauna. Scientific 
Reports, 9(1), 1–10. https://doi.org/10.1038/s41598-019-54980-8

Zarfl, C., Lumsdon, A. E., Berlekamp, J., Tydecks, L., & Tockner, K. (2015). A global 
boom in hydropower dam construction. Aquatic Sciences, 77(1), 161–170. https://
doi.org/10.1007/s00027-014-0377-0

Zhang, R., Cuartas, L. A., de Castro Carvalho, L. V., Reis Deusdará Leal, K., 
Mendiondo, E. M., Abe, N., Birkinshaw, S., Samprogna Mohor, G., Selu-
chi, M. E., & Nobre, C. A. (2018). Season-based rainfall-runoff modelling 
using the probability-distributed model (PDM) for large basins in south-
eastern Brazil. Hydrological Processes, 32, 2217–2230. https://doi.
org/10.1002/hyp.13154

Downloaded From: https://staging.bioone.org/journals/Air,-Soil-and-Water-Research on 13 Jan 2025
Terms of Use: https://staging.bioone.org/terms-of-use

https://doi.org/10.1093/biomet/78.3.499
https://doi.org/10.1093/biomet/78.3.499
https://doi.org/10.11614/ksl.2016.49.4.354
https://doi.org/10.1016/j.ecolind.2019.105769
https://doi.org/10.1155/2017/8153246
https://doi.org/10.1155/2017/8153246
https://doi.org/10.1051/e3sconf/202124903015
https://doi.org/10.1051/e3sconf/202124903015
https://doi.org/10.1016/j.ecolind.2021.108354
https://doi.org/10.1016/j.envint.2019.104916
https://doi.org/10.1016/j.envint.2019.104916
https://doi.org/10.1016/j.rser.2017.08.090
https://www.researchgate.net/publication/305781610
https://doi.org/10.1016/j.jhydrol.2015.01.021
https://doi.org/10.3390/w13020186
https://doi.org/10.3390/w13020186
https://doi.org/10.1016/j.japb.2018.02.006
https://doi.org/10.1111/j.1365-2486.2010.02163.x
https://doi.org/10.3390/environments6060062
https://doi.org/10.1111/lre.12283
https://doi.org/10.1111/lre.12283
https://doi.org/10.1515/johh-2015-0041
https://doi.org/10.1111/j.1440-1770.2009.00412.x
https://doi.org/10.1111/j.1440-1770.2009.00412.x
https://doi.org/10.2166/hydro.2011.084
https://doi.org/10.2166/hydro.2011.084
https://doi.org/10.1590/s2179-975x3515
https://doi.org/10.1590/s2179-975x3515
https://doi.org/10.1007/s10661-021-09167-y
https://doi.org/10.1007/s10661-021-09167-y
https://doi.org/10.9734/jenrr/2021/v8i130201
https://doi.org/10.1080/07900627.2021.1875809
https://doi.org/10.1080/07900627.2021.1875809
https://doi.org/10.1016/j.envpol.2019.113860
https://doi.org/10.1016/j.envpol.2020.115417
https://doi.org/10.1016/j.envpol.2020.115417
https://doi.org/10.1007/s10750-017-3376-z
https://doi.org/10.1007/s10750-017-3376-z
https://doi.org/10.1007/s10750-018-3810-x
https://doi.org/10.5194/bg-16-1657-2019
https://doi.org/10.1007/s10661-018-6527-4
https://doi.org/10.1007/s10661-018-6527-4
https://doi.org/10.1016/j.scitotenv.2020.143377
https://doi.org/10.1016/j.scitotenv.2020.143377
https://doi.org/10.3390/w10091124
https://doi.org/10.1038/s41598-019-54980-8
https://doi.org/10.1007/s00027-014-0377-0
https://doi.org/10.1007/s00027-014-0377-0
https://doi.org/10.1002/hyp.13154
https://doi.org/10.1002/hyp.13154

