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Introduction
Wetland ecosystems are under threats due rapid expansion 
of agricultural lands particularly in developing countries. 
The conversion of wetland ecosystems to agricultural land 
exposed wetland dependent species to threats. To overcome 
the problem of wetland degradation, different organiza-
tions are working to rehabilitate wetland ecosystems. 
Watershed management is an ever-evolving activity that 
involves the ecological, social, and economic management 
of land, water, biota, and other resources in a given area 
(Shine & Klemm, 1999; Wang, Mang et al., 2016). Wetlands 
are the transition between the land and sea and thus from 
freshwater to marine environments (Basset et  al., 2013; 
Facca, 2020). Wetlands are one of the most important habi-
tats for various plant and animals. It provides different vari-
eties of ecosystem services (Maltby, 1991; Zollitsch et  al., 
2019). The presence of wetlands is one of the main indica-
tors of environmental health.
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ABSTRACT: Wetland ecosystems are one of the most important areas that provides different ecosystems services as well as habitat for plant 
and animal species. In spite of multipurpose, wetland ecosystems are under threats. This study attempts to analyze wetland dynamics of Abay 
Choman and Jimma Geneti watershed in Horo Guduru Wollega Zone, Western Ethiopia using geospatial techniques. The land use land cover 
(LULC), the Normalized Difference Vegetation Index (NDVI), and Normalized Difference Water Index (NDWI) were investigated using Landsat 
5 TM of 1991, Landsat 7ETM+ of 2003, and OLI/TIRS of 2021. In the present study, the LULC was classified using a supervised classification 
method with maximum likelihood algorithm. The red and infrared bands of Landsat imagery from three different time periods were used to cal-
culate NDVI, while the NDWI was estimated using the green and near infrared (NIR) bands of multispectral Landsat images. Results show that 
wetland ecosystem in the study area decreased by about 125.2 km2 (8.8%) with the rate of 4.2 km2/year. In contrast, agricultural land increased 
by 223.4 km2 with the rate of 7.4 km2/year between 1991 and 2021. About 66.7 km2 wetland was converted to cultivated land whereas 29.3 and 
24.7 km2 of grassland and shrubs land were converted into cultivated land. As a result, the maximum NDVI and NDWI values were decreased 
between 1991 and 2021. To minimize the rapid loss of wetland and water bodies in the study area, proper land use planning and environmental 
education should be promoted.
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Inland and coastal wetlands span about 2.16 million km2, an 
area nearly as large as Greenland, with 54% permanently flooded 
and 46% flooded seasonally (Gardner & Finlayson, 2020). 
Wetlands are critical resources with numerous values and uses 
(Shi et al., 2008). In their natural condition, wetlands provide a 
variety of ecological and socio-economic benefits that contribute 
to the well-being of rural communities and the country’s envi-
ronmental security (Dixon et al., 2021; Wood, 2001).

Human-wetland interactions must be prioritized in the 
development of wetland policy and management strategies 
(Nguyen et al., 2017). Monitoring changes in land use and land 
cover (LULC) particularly expansion of agricultural land to wet-
land is seeking to control uncontrolled growth particularly in 
rural areas (Patil et al., 2012). Geographic Information Systems 
(GIS) and remote sensing satellites have become the most pow-
erful tools for assessing and monitoring of natural resources and 
the environment (Das et  al., 2022; Garg, 2015; Najar et  al., 
2017). Substantial studies highlight that GIS and remote sens-
ing techniques are widely used to survey wetland change very 
quickly, at low cost, and with greater accuracy (Brooks et  al., 
2004; Haque & Basak, 2017; Liu et  al., 2006; Mabwoga & 
Thukral, 2014; Schmidt & Skidmore, 2003; Tobore et al., 2021). 
GIS and remote sensing techniques are more accurate than field 
observations and other techniques for measuring the rate of 

Correction (December 2023): The full form of the word “EWRP” has 
been corrected on page 2; see in-text footnote 1 for details.
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change of LULC over time. This is due to its capacity to calcu-
late the extent of gain and loss in hectares and other units.

Wetlands are under threats all over the world, despite the ben-
efits and services they provide to humans (Maltby, 1991). At global 
level, wetland ecosystems are destroyed by agricultural expansion, 
urban development, hydrological changes, pollutants input from 
factories, and municipalities (Allen et al., 2020; Das & Basu, 2020; 
Dinsa & Gemeda, 2019; Gemeda et al., 2016; He, 2019; Kundu 
et al., 2022; Levin et al., 2009; Orimoloye et al., 2020). Despite the 
fact that Ethiopian Wetlands Research Programme (EWRP)1 has 
had a significant impact on developing national interest in wet-
lands among research, government, and non-governmental organ-
izations, its more holistic social-ecological interpretation of 
wetland management has been overlooked within a policy arena 
dominated by specific sectoral interests and little recognition of 
local people’s needs (Dixon et al., 2021).

Ethiopia has an abundance of water resources and wetlands, 
including twelve river basins, eight major lakes, numerous swamps, 
floodplains, and man-made reservoirs (Abunie, 2003). According 
to studies, approximately 110 billion cubic meters of water runoff 
from the aforementioned sources each year, with 74% of that water 
flowing into rivers that drain into neighboring countries 
(Ethiopian Forestry Action Programme [EFAP], 1989). Despite 
its widespread distribution, Ethiopia’s inventory of wetland 
resources is incomplete. Ethiopian wetlands cover about 
13,700 km2 (1.14%) of the country (Hillman & Abebe, 1993).

In the study area, wetland areas were degraded due to various 
human induced activities: including poor watershed manage-
ment practices such as deforestation, expansion of agricultural 
land, poor farming methods, overgrazing by domestic livestock 
are the main causes of wetland loss and degradation. These 
changes contribute to the degradation of water quality, a 
decrease in the abundance and diversity of wetland. Furthermore, 
these changes reduce the availability of wetland products 
(medicinal plants, fish farming activities, recreational areas) and 
ecosystem services. This, in turn, has a negative impact on food 
security and poverty alleviation, with a significant impact on 
communities that rely heavily on wetland products for a living.

Accurate, efficient, and repeatable mapping of changes in 
wetlands and riparian regions (referred to collectively as wet-
lands) is critical for monitoring human, climatic, and other 
effects on these critical systems (Baker et al., 2007). Wetlands are 
under threats all over the world, despite the benefits and services 
they provide to humans (Maltby, 1991). Several studies have 
been conducted in and around the study area to show drivers and 
implications of LULC change and soil erosion risk assessment 
(Beyene, 2019; Dibaba et al., 2020; Hailu et al., 2020). Geospatial 
technologies are widely used in the mapping and monitoring of 
wetland ecosystems. The spatio-temporal change of wetland 
ecosystems has been also calculated using geospatial technolo-
gies. However, detail information on wetland dynamics is uncer-
tain to design wetland conservation and management strategies. 

Therefore, this study attempts to fill the existing research gap by 
analyzing wetland dynamics using geospatial techniques in Abay 
Choman and Jimma Geneti watershed, Horo Guduru Wollega 
Zone, Western Ethiopia. The results of this study will be useful 
specially to design effective strategies to conserve wetland degra-
dation in the study area and beyond.

Materials and Methods
Description of the study area

The Abay Choman and Jimma Geneti watershed is part of the 
Abay basin, which is located in the Horo Guduru Wollega of the 
Oromia National Regional State (Figure 1). Geographically, the 
study area is situated between 9°11′00″N to 9°38′’30″N and 
37°4′’00″E and 37°26′’00″E and the elevation of the study area 
varies from 3,200 to 1,644 m above the mean sea level. The study 
area was approximately 1,426.6 km2. The watershed is character-
ized by high topographic relief and has cold climate condition. 
The area has large upstream water potential sites, intensive irriga-
ble downstream lands, and high hydropower potential (Dibaba 
et  al., 2020). Previous studies in southwestern Ethiopia have 
documented a decline in wetland resources due to environmental 
pressure and human stresses (Berhanu et al., 2021; Dibaba et al., 
2020; Dixon et al., 2021; Hussien et al., 2018). The study area has 
different LULC classes: cultivated land, forest, grassland, shrubs 
land, and settlements. Among the LULC types, agricultural land 
is the most dominant in the study area (Hailu et al., 2020).

Soil types

There are eight major soil groups were identified in the Abay 
choman and Jimma Geneti watershed: Chromic Luvisols, 
Eutric Cambisols, Eutric Leptosols, Eutric Vertisols, Haplic 
Alisols, Haplic Arenosols, Haplic Phaeozems, Rhodic Nitisols 
(Kenea et al., 2021).

Climate

The study area is found in the wettest part of the country. The 
area receives sufficient amount of rainfall throughout the year 
except during dry season (December to February). The mean 
annual rainfall of the study area is about 1,320 mm (Kitila et al., 
2015). The study area received maximum rainfall between the 
month of June and September, which shares about 80% of the 
total annual rainfall. The share of annual rainfall for winter sea-
son (December to February) accounts about 5%. The average 
annual maximum and minimum temperatures is about 30°C 
and 14.8°C, respectively (Tessema & Simane, 2019).

Data sources and descriptions

Landsat imagery for the years 1991 TM, 2003ETM+, and 
2021 OLI/TIRS was obtained from the Earth Explorer 

1 The full form of the word “EWRP” has been corrected to “Ethiopian Wetlands Research Programme” from “Emergency Wetlands Reserve 
Program” after the article’s original OnlineFirst publication.
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website (http://eathexplorer.usgs.gov/) by path 169 row 54. 
These Landsat images were downloaded from cloud-free 
images during the dry season ( January-February) (Table 1 and 
Figure 2). These Landsat images were used to calculate the 
LULC, NDVI, and NDWI.

Software packages used

For image processing and categorization, the Earth Resources 
Data Analysis System (ERDAS) Imagine 2015 software was 
employed. For analyzing and visualizing spatial data, ArcGIS 

10.3 was employed. ArcGIS software was used to create the 
drainage network and extract the sub basins using Arc SWAT.

Methodology
Analyses of LULC types

Landsat images TM from 1991, ETM+ from 2003, and OLI/
TIRS from 2021 were used to classify land use and land cover 
types in the Abay Choman watershed. The LULC classifica-
tion was supervised and using the maximum likelihood 
approach (Moisa & Gemeda, 2021; Moisa et al., 2021). The 

Figure 1. Map of the study area.

Table 1. Data Sources and its Descriptions.

DATA TYpES SENSOR ACqUiSiTiON YEAR pATh AND ROW RESOlUTiON SOURCE

landsat 5 TM 1991 169 & 054 30 m USGS

landsat 7 ETM+ 2003 169 & 054 30 m

landsat 8 Oli/TiRS 2021 169 & 054 30 m

ASTER DEM - - - 30 m

Downloaded From: https://staging.bioone.org/journals/Air,-Soil-and-Water-Research on 13 Jan 2025
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study area’s LULC was divided into four categories: cultivated 
land, grassland, shrubland, and wetland.

Accuracy assessment
Ground control points were collected using GPS and Google 
Earth for accessible and inaccessible area respectively. The col-
lected ground control points were used to calculate accuracy 
assessment for each LULC class. For each LULC type, 40 
samples were collected using random stratified method. The 
field photos (high-resolution Google Earth images) of these 
field samples were attached in Supplemental Figure 1.

As indicated in Congalton (1991) and Moisa and Gemeda 
(2021), the overall accuracy was calculated by dividing all the pix-
els properly categorized by the total number of pixels in the matrix 
(equation (1)). Alam et  al. (2020), Merga et  al. (2022), Mishra 
et al. (2020), and Moisa et al. (2021) calculated the overall accuracy 
and Kappa coefficient (Khat) to measure the degree of agreement 
between the two maps in the form of a confusion matrix (Alam 
et al., 2020; Mishra et al., 2020; Moisa et al., 2021; (equation (2)).

Overall accuracy =
Sumof the diagonal elements

Total number of accurracy sites pixels( )
×100  

(1)

Khat = −
−

Obs exp

exp1  (2)

where: Obs is observed correct or overall accuracy and Exp is 
represents correct classification.

LULC change detection. The quantity of altered area, extent of 
change utilized to assess the degree of change over time is 
determined using equation (3) (Abebe et al., 2019; Eyasu et al., 
2019; Gessesse et al., 2017; Kabite et al., 2020; Moisa, Dejene, 
Merga, et al., 2022a).

Rate of change ( )km

year

A A

Z

2 2 1
=

−
 (3)

where A is anarea of LULC in square kilometer in time, ,2 2

A is anarea of LULC in square kilometer in time1 1;

Z is Time interval between A2 and A1 in years.

Estimation of NDVI. The NDVI is used to calculate the quan-
tity of aboveground green vegetation cover (Moisa, Dejene, 
Hirko, et al., 2022; Moisa, Dejene, Merga, et al., 2022a; Wolteji 
et al., 2022; equation (4)).

NDVI
NIR R

NIR R
=

−
+

 (4)

Data Sources

Landsat images (TM 1991, ETM+ 2003 and OLI/TIRS 2021 

Red and NIR Green and MIR Image 

Multispectral band

Band Rationing

NDVI NDWI

Identification vegetated 
and non-vegetated area

Identification of water 
body and wetland area

Image classification

Supervised 
classification 

Maximum 
likelihood

NDVI map of 1991, 
2003 and 2021

NDWI map of 1991, 
2003 and 2021 LULC map of 1991, 

2003 and 2021

Change Analysis

Result and interpretation 

Figure 2. Methodological flowchart.
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whereNDVI isNormalizedDifferenceVegetation Index,
NIR is thenear infrared band andR is the red band

Landsat 8 data used Bands 5 (Infrared) and 4 (red), whereas 
Landsat 5 and 7 used Bands 4 and3, to calculate the NDVI 
values.

Normalized difference water index (NDWI). When modeling 
the thermal environment, the NDWI is used to simulate water 
areas, which often have significant thermal changes (Siqi & 
Yuhong, 2020; Zhou & Wang, 2011). Green band (band 2 for 
Landsat 5 and 7, band 3 for Landsat 8) and near infrared (band 
4 for Landsat 5 and 7, band 5 for Landsat 8) reflectance meas-
urements were used to build the formula (equation (5)). The 
Near-Infrared (NIR) and Green (G) channels are used to cal-
culate the NDWI ( Jackson et al., 2004).

NDWI Green NIR
Green NIR

=
−
+

 (5)

Results and Discussions
Analyses of LULC change

The LULC of the study area was classified into four classes as cul-
tivated land, grassland, shrubland, and wetlands for the year 1991, 
2003, and 2021 (Table 2; Figure 3). The results show that cultivated 
land was the most prominent LULC type in 1991, 2003, and 2021, 
with an area of 546.3 km2 (38.3%), 678.2 km2 (47.5%), and 
769.7 km2 (54.0%), respectively. This clearly demonstrated that the 
amount of cultivated land increased over the study period.

Between 1991 and 2021, the amount of wetlands was 
decreased. For instance, in 1991, wetland covers about 
616.5 km2 (43.2%), and declined to 543.8 km2 (38.1%) and 
491.3 km2 (34.4%) in 2003, and 2021, respectively. Furthermore, 
shrubs land and grassland showed a downward tendency. These 
results are consistent with Moisa, Dejene, Merga, et al. (2022b), 
Moisa, Merga et  al. (2022a), and Negash et  al. (2021), who 
reported that shrubs land and grassland were showed a decreas-
ing trend. A study by Dibaba et al. (2020) confirmed that, for-
est land, water body and swampy areas were decreased due to 

Table 2. lUlC Change of the Study Area.

lUlC TYpES 1991 2003 2021

AREA (KM2) AREA (%) AREA (KM2) AREA (%) AREA (KM2) AREA (%)

Cultivated land 546.3 38.3 678.2 47.5 769.7 54.0

Grassland 102.1 7.2 71.9 5.0 51.1 3.6

Shrubs land 161.7 11.3 132.7 9.3 114.5 8.0

Wetland 616.5 43.2 543.8 38.1 491.3 34.4

Total 1,426.6 100.0 1,426.6 100.0 1,426.6 100.0

Figure 3. lUlC map of the study area.
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expansion of agricultural land in Fincha’a catchment from 
1987 to 2017. Changes in LULC could have a large impact on 
climate change, which in turn could affect agricultural produc-
tion. Changes in LULC are one of the key drivers for the 
increasing trends in mean minimum and maximum tempera-
tures in the wettest parts of Ethiopia (Gemeda et  al., 2022; 
Gemeda, Korecha et al., 2021).

It is clear that there is a direct relationship between precipi-
tation, runoff, temperature, groundwater and wetland ecosys-
tems. The combined effects of LULC change and climate 
change significantly affects the ground water potential and 
results in changes in water balance particularly in tropical areas 
(Ha et al., 2019; Marhaento et al., 2017). The functioning of 
wetland ecosystem relies upon the water level and precipita-
tion, that have a huge effect on wetland habitat and the corre-
sponding species (Dawson et  al., 2003). House et  al. (2016) 
highlight that in areas with groundwater upwelling, the 
response of water levels to climate change is exaggerated. 
Gemeda, Feyssa et  al. (2021) concluded that environmental 
factors such as wetland and river size are important indicators 
of climate change. As reported by Li, Hu et al. (2021) evapora-
tion had a significant negative impact on the distribution of 
wetlands.

Trends of LULC change

Results revealed that different LULC types showed both positive 
and negative tendencies. Among the existing LULC types, culti-
vated land is the only land category that shows a positive trend 

during the study period. Negative values indicate a declining 
trend, while positive values indicate a rising tendency. Over culti-
vated land, there was a rising tendency, with an increase of 
223.4 km2 from 1991 to 2021. Wetland was declined by 125.2 km2, 
from 1991 to 2021 (Figure 4). Furthermore, shrubs land and 
grassland showed a decreasing tendency. The loss of grassland 
and shrub land cover classes over the study period is almost com-
parable in terms of loss in hectare. The expansion of cultivated 
land was the primary cause of the loss of wetland, shrubland and 
grasslands in the study area. Another study by Negassa et  al. 
(2020) and Moisa et  al. (2021) found that rapid population 
growth is one of the main drivers of increased development of 
cultivated land, leading to land degradation, especially on steep 
slopes. Hailu et al. (2020) stated that in the Jimma Geneti district 
wetland were declined by 19.2% from 1973 to 2019. On the 
other hand, cultivated land has increased by 13% from 1973 to 
2019 with the rate of 7.4 km2/year.

Rate of LULC change

The findings demonstrated a high rate of change in cultivated 
land and wetlands. From 1991 to 2021, cultivated land 
expanded by 7.4 km2/year, whereas wetland was decreased by 
4.2 km2/year. In addition, between 1991 and 2021, shrubs land 
and grassland lost 1.6 km2/year and 1.8 km2/year, respectively 
(Table 3). This result is more consistent with previous studies 
(Eyasu et  al., 2019; Moisa & Gemeda, 2021; Wedajo et  al., 
2020), where agricultural land exhibits a high positive rate of 
change, while vegetation experienced a declining trend. Rapid 
population growth and the increasing demand for agricultural 
land are some of the key drivers for rapid conversion of LULC 
in the study area. In addition, the concern for environmental 
conservations by stakeholders and individuals’ interest has not 
reached the required level.

Accuracy assessment

The accuracy of the classified LULC maps was assessed in the 
current study to ensure their trustworthiness. The reference data 
was compared to the classified LULC types. The total 
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Figure 4. Trends of land use land cover of the study area.

Table 3. Rate of lUlC Types of the Study Area.

lUlC TYpES 1991–2003 2003–2021 1991–2021

KM2/YEAR KM2/YEAR KM2/YEAR

Cultivated land 11.0 5.1 7.4

Grassland −2.5 −1.2 −1.7

Shrubs land −2.4 -1.0 −1.6

Wetland −6.1 −2.9 −4.2
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classification accuracy of the LULC accuracy assessments for the 
study periods 1991, 2003, and 2021 was 86.8%, 83.4%, and 85.7%, 
respectively. As a result, for the study periods 1991, 2003, and 
2021, the kappa coefficients were 0.85, 0.82, and 0.83, respectively 
(Table 4).

Spatiotemporal distributions of NDVI

The NDVI value was used to evaluate the decline of shrubs land 
and grassland in the study area. Due to a drop in green vegeta-
tion and the extension of cultivated land, high NDVI values 
decreased dramatically from 1991 to 2021, with a maximum 
value of 0.68 to 0.53. Wolteji et al. (2022) in the Central Rift 
Valley of Ethiopia confirmed that low NDVI values indicate for-
est degradation that may be related to drought. In this study, 
results of NDVI values between 1991 and 2021 show a decreas-
ing spatial distribution of green vegetation. The center and 
southern regions of the research area have greater NDVI values, 
according to the findings. Low NDVI values were found over 

cultivated land (after harvesting), lake bodies, and marsh areas 
with less vegetation (Figure 5). According to previous studies by 
Moisa, Dejene, Merga, et al. (2022a) and Moisa, Merga et al. 
(2022b), agricultural land expansion is the primary source of 
green vegetation reduction.

Spatiotemporal distributions of NDWI

The decline in NDWI from 1991 to 2021 reduced the size of 
water bodies and wetlands. The main reason for the decrease in 
NDWI in the study area was the expansion of agricultural land. 
Agricultural land was increased by 15.7%, whereas, water body 
and wetland were decreased by 3.7% and 5.7% respectively. The 
greatest NDWI value in 1991 was 0.58, 0.48 in 2003, and 0.21 
in 2021, according to the results. The NDWI results revealed 
that there was a high value in the central areas of the study area 
during the study period (Figure 6). The data show that cultivated 
land has a low NDWI value. The outcome is consistent with 
earlier research (Mukherjee & Pal, 2021; Roy et al., 2021).

Table 4. Accuracy Assessment of lUlC for 1991, 2003, and 2021.

lUlC TYpES 1991 2003 2021

pRODUCERS 
ACCURACY (%)

USERS 
ACCURACY (%)

pRODUCERS 
ACCURACY (%)

USERS 
ACCURACY (%)

pRODUCERS 
ACCURACY (%)

USERS 
ACCURACY (%)

Cultivated 89.0 82.6 87.5 95 88.6 92.8

Grassland 90.1 88.2 92.3 91.8 93.3 95.2

Shrubs land 92.3 93.5 94.3 95.8 96.4 94.7

Wetland 82.6 81.7 90.5 85 91.7 92

Overall Accuracy 86.8% 83.4% 85.7%

kappa coefficient 0.85 0.82 0.83

Figure 5. NDVi map of the study area.
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LULC conversions from 1991 to 2021

We employed the land use transfer matrix (LUTM) method to 
analyze the LULC change during the study periods 1991 to 2021. 
Major LULC conversion within Abay Choman and Jimma 
Geneti watershed was presented in Figure 7. The results show that 

about 66.7 km2 wetland was converted to cultivated land, whereas 
29.3 and 24.7 km2 of grassland and shrubs land were converted to 
cultivated land during the study periods of 1991 to 2021 (Table 5). 
The high conversion of forest cover to agricultural land has been 
reported by Negassa et al. (2020) in Komto protected forest prior-
ity area from the years 1991 to 2019. A study by Moisa, Dejene, 

Figure 6. NDWi map of the study area.

Figure 7. lUlC conversion map from 1991 to 2021.
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Hirko, et al. (2022) reported a rapid decline of forest and grassland 
land cover due to high conversion to agricultural land in Anger 
River sub basin. The results clearly show that the extreme decline 
in high NDVI and NDWI values between 1991 and 2021 was 
caused by a sharp decrease in vegetation cover and degradation of 
wetlands and wetlands due to expansion of cultivated land. A 
recent study by Moisa, Gabissa et al. (2022) found that agricultural 
expansion was the main cause of the decline in NDVI and NDWI 
in Gida Kiremu, Amuru and Limu districts from 1990 to 2020.

Conclusions
Wetlands are vital resources with numerous values and functions, 
notably in terms of climate change mitigation. This study clearly 
shown that the wetland ecosystems are changing from time to 
time due to overexploitation for agricultural land and other 
activities. In this study, geospatial techniques were used to explore 
wetland dynamics in the Abay Choman and Jimma Geneti 
watershed. The results showed that cultivated area increased and 
wetland ecosystems decreased during the study period. 
Agricultural land was expanding at a 7.4 km2/year, whereas wet-
land was shrinking at 1.8 and 2.4 km2/year, respectively. Between 
1991 and 2021, shrubland and grassland lost 1.6 and 1.8 km2/
year, respectively. Due to a drop in green vegetation and the 
extension of cultivated land, high NDVI values decreased dra-
matically from 0.68 to 0.53. The main reason for the decrease in 
NDWI in the study area was the expansion of agricultural land. 
There great variation of NDWI value over the study period, 
which is between 0.58 in 1991, and 0.48 and 0.21 in 2003, and 
2021, respectively. The decreasing values of NDWI indicates can 
accurately indicate the problem of environmental change in the 
study area, which requires further research and conservation ini-
tiatives to minimize the current declining trend. Natural resource 
managers and environmental professionals therefore need to 
raise public awareness and advocate for the wise use of natural 
resources, with a particular focus on wetland conservation and 
protection. Furthers studies particularly the impact of rainfall 
and temperature on wetland ecosystem should be investigated.
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