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Introduction
Foxtail millet (Setaria italica) is a C4 cereal plant that belongs 
to the Poaceae family. It has been cultivated for more than 
8000 years in North China ( Jia et  al., 2013; Prasad, 2017). 
Based on data collected in the Herbarium Bogoriense, 
Indonesia, it is estimated that in the early 1900s, foxtail millet 
was distributed in some Indonesian regions such as Sulawesi, 
Java, South Sumatra, Kalimantan, a small part of the Sunda 
Islands, Maluku, and Papua (Lestari et al., 2017). Foxtail millet 
is generally used as a bird feed despite the fact that the plant 
contains high fiber but low protein (Yulita & Ridwan, 2018). 
In some areas, such as Buru Island, Indonesia, the plant is con-
sidered a local superior food crop consumed by the local com-
munity (Herodian et al., 2008). The seeds contain carbohydrates, 
ranging from 60% to 80%; vitamins; and minerals such as cal-
cium (Ca), iron (Fe), magnesium (Mg), phosphorus (P), zinc 
(Zn), and potassium (K).

The nutritional content of foxtail millet is three to five times 
higher than that of rice and wheat (Verma et al., 2015). Foxtail 
millet grows in arid and semiarid habitats and has a high toler-
ance to marginal environmental conditions. The plant is also 
able to grow well on various types of soil: from sandy to clay 
soils, even in rocky areas on hillsides (Herodian et  al., 2008). 
Besides its advantages as alternative food, foxtail millet has the 
potential for biofuel production (Zhang et al., 2012). There are 
several accessions cultivated by Indonesian farmers, each of 
which has different morphological characteristics. In Maluku, 
Buru Merah and Buru Kuning are the most widely developed 

accessions. The Buru Merah accession shows better performance 
and viability than other accessions (Nisa & Jadid, 2021).

Several previous studies have revealed that foxtail millet is 
highly adaptable to environmental stress conditions such as 
drought stress and salinity stress (Lapuimakuni et al., 2018; Nisa 
& Jadid, 2021). However, studies on the responses of foxtail mil-
let to heavy metals are limited. In some areas, including Buru 
Island, Indonesia, this plant is cultivated near a source of water 
that is polluted with heavy metal (Tupan & Uneputty, 2017). Cd 
contamination is thought to result from abrasion process in the 
river, garbage disposal activities by communities, wastewater irri-
gation, and ship repair and painting activities (Genchi et  al., 
2020). Additionally, Cd contamination in soil can result from 
the use of chemical or non-organic fertilizers, which are often 
used in agriculture (Khan et al., 2017).

A previous study revealed that the use of phosphate fertilizers 
on agricultural land could increase Cd content in the soil which 
can increase soil acidulation and hence, reduce the quality of the 
soil. Additionally, contamination of soil with Cd results in its 
accumulation in plants (Cui et  al., 2014; Dharma-Wardana, 
2018). According to the data from the US Environmental 
Protection Agency (EPA), Cd is the major contaminant or pol-
lutant, after mercury (Hg) and lead (Pb), causing environmental 
damage ( Jamers et al., 2013). Cadmium can cause kidney disor-
ders, and at certain concentrations, it can cause damage to other 
organs such as the lungs and heart (Khan et al., 2017). Moreover, 
heavy metal stress is a limiting factor that causes a decrease in 
agricultural productivity (Gupta et al., 2013).
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Cadmium is a nonessential micronutrient that is absorbed 
through the plant root system and transported to the aerial 
parts of plants (Abozeid et al., 2017). Cadmium accumulation 
in plants can cause changes in plant morphology and physiol-
ogy (Bruno et al., 2017). The toxic effects of Cd on plants lead 
to chlorosis, leaf epinasty, and deformation of the chloroplast 
structure (Gill & Tuteja, 2011). Excessive Cd accumulation can 
inhibit nutrient uptake (Sánchez-Pardo et  al., 2013), photo-
synthesis (Xue et al., 2013), cellular respiration, and nitrogen 
metabolism (Bruno et  al., 2017). Templeton and Liu (2010) 
reported that Cd accumulation can inhibit enzyme activity, 
increase oxidative stress, and reduce antioxidant levels. Cd 
uptake occurs through protein transporters. However, the 
uptake of Cd in some other plants is non-specific (Lu et al., 
2009). Most of metal ions enter via root cells and subsequently 
be detoxified in the cytoplasm. Vacuoles are act as storage orga-
nelles. Heavy metals sequestration and detoxification are 
important strategies for plants. These processes mainly take 
place in the cuticles and trichomes (Haider et al., 2021).

Many plants developed their defense mechanisms against 
Cd contamination in genotype-dependent manner (Haider 
et  al., 2021). Some plants display high tolerance to Cd con-
tamination. More than 450 species were classified as hyperac-
cumulators of heavy metals (Tran & Popova, 2013). Due to the 
negative effects of Cd contamination, an eco-friendly protocol 
for mitigating the contamination should be developed (Khanna, 
Jamwal, Gandhi, et  al., 2019). The use of microbes as plant 
growth-promoting microorgananisms (PGPM) is now widely 
used by farmer, not only for reducing the Cd pollution from 
soils but also for improving agricultural crop productivity 
(Khanna et al., 2021).

The present work observed the effects of Cd stress on the 
morpho-physiological responses of the foxtail millet accession 

Buru Merah. In this study, four levels of Cd concentrations (0, 
0.5, 1.0, and 1.5 µM in ABmix™ growth media) were applied 
for 4 weeks to the tested plants using hydroponic compartments. 
Some morpho-physiological assessments, including plant 
height, root length, shoot and leaves number, panicle biomass 
measurements, and chlorophyll content evaluation were meas-
ured. Our study showed negative impact of Cd contamination 
on the growth and development of foxtail millet. This also 
highlighted the importance of protection the biosphere from 
heavy metal contamination.

Materials and Methods
Plant cultivation and Cd stress treatment

Foxtail millet (accession Buru Merah) seeds were obtained from 
the Indonesian Institute of Sciences (LIPI). The 5-days germi-
nated foxtail seeds were then transferred into hydroponic con-
tainers supplemented with the AB Mix™ medium (Figure 1). 
Fourteen days after planting (DAP) the foxtail millets, they 
were treated with CdCl2 (at concentrations of 0, 0.5, 1, and 
1.5 µM) for 4 weeks (Salinitro et al., 2021). Nine replicates were 
used for each treatment unit (Salinitro et al., 2021).

Morpho-physiological assessments

Plant growth is important parameter to evaluate the effect of 
abiotic stress (Sher et  al., 2021). In this study plant growth 
were represented by some morphological factors including 
plant height, root length, number of leaves, and number of 
shoots. The assessment was performed after 4 weeks of treat-
ment (Salinitro et al., 2021). All tested plants were removed 
from the hydroponic containers after 4 weeks of treatment and 
rinsed with tap water before being photographed to demon-
strate the morphological appearances and root architecture. 

Figure 1. Foxtail millet accession Buru Merah treated with Cd stress.
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Panicle biomass and chlorophyll content were also measured. 
The panicles produced from the 28 days of treatment (DAT) 
plants were collected and photographed. Chlorophyll content 
is used to indicate the photosynthesis activity of the treated 
plants. Therefore, it might represent plant productivity (Nisa 
& Jadid, 2021). Chlorophyll was measured using two-wave-
length spectrophotometers to determine the absorption spec-
tra of the chlorophyll dissolved in organic solvents. Leaves 
(0.1 g) from each treatment were used for chlorophyll content 
analysis. The sample was ground in a mortar and homoge-
nized using 2 ml of 80% acetone (Nisa & Jadid, 2021). 
Subsequently, the homogenate was transferred into a measur-
ing cup and calibrated using an 80% acetone solvent to obtain 
a volume of 10 ml and then centrifuged at 2,500 rpm for 
10 minutes. The supernatant obtained was then quantified at 
645 and 663 nm using a spectrophotometer (Nisa & Jadid, 
2021). The extinction coefficient and relative absorption of 
chlorophyll-a and -b dissolved in the acetone were determined 
according to Lichtenthaler (1987). The absorbance results 
obtained were utilized to measure the levels of chlorophyll-a, 
chlorophyll-b, and total chlorophyll using the following equa-
tion (Rajput & Patil, 2017):

Chlorophyll a mg g FW  

A A
V W

/

( . [ ] . [ ])

( ) =

−

( )( )
12 7 663 2 69 645

1000

 
(1)

Chlorophyll b mg g FW

A A
V W

( / )

( . [ ] . [ ])

=

−

( )( )
22 9 645 4 68 663

1000

 
(2)

Total Chlorophyll mg g FW

A A
V W

( / )

( , [ ] . [ ])

=

−

( )( )
20 2 645 8 02 663

10000

 
(3)

Note:
A: absorbance value at specific wavelength

V: volume of chlorophyll extracts (mL)
W: fresh weight of the extracted tissues (g)

Data analysis

All morphological measurements were conducted in triplicate, 
and the results were expressed as mean ± SD. The analysis of 
variance (ANOVA) test was performed using SPSS 25. 
Microsoft Excel 2010 (Microsoft Corporation, Redmond, WA, 
USA) was used for morphological and chlorophyll content 
data processing and interpretation. Statistical significance was 
indicated at p < .05.

Results and Discussion
Effect of Cd on plant height and root length

As assessed from the one-way ANOVA test, Cd stress at dif-
ferent concentrations had a significant effect (p < .05) on the 
morphological characteristics, such as plant height and root 
length, of Buru Merah. Our data demonstrated that the average 
height of plants treated with 0.5, 1.0, and 1.5 µM Cd was 7.4%, 
19.1%, and 29.3% lower than that of the control plant (Figures 
2 and 3), respectively. These results were in agreement with 
those of Tian et al. (2017), who reported that high concentra-
tion of Cd contamination results in decreased height in S. ital-
ica plant compared to that in non-treated plants. However, 
their responses might be genotype- and Cd concentration-
dependent. In addition, Cd stress has been reported to decrease 
other industrial crops height such as in cotton plants (Farooq 
et  al., 2016), Hibiscus cannabinus cultivars Fuhong 991, and 
ZM412 (Li et al., 2013). Other studies on the effect of heavy 
metals have also reported similar results, which was demon-
strated by reduce of plant height after heavy metal treatment 
(Farid et al., 2013; Jadid et al., 2017). This might indicate that 
heavy metal contamination in soil inhibits plant growth.

In addition, Cd stress was found to cause a significant 
reduction in the root length of S. italica. The lowest average 
root length (14.13 cm) was observed in S. italica treated with 
1.5 µM Cd and was approximately 45.9% lower than that of 

Figure 2. Effect of Cd stress treatment on plant height in the foxtail millet 

(S. italica) accession Buru Merah after 4 weeks of Cd stress treatment. 

Different letters indicate statistically differences at p value < .05.

Figure 3. Morphological appearance of the foxtail millet (S. italica) 

accession Buru Merah in response to Cd stress treatment ((A) non-

treated plant; (B–D) plants treated with 0.5, 1.0, and 1.5 µM, respectively).
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the non-treated plants (26.1 cm) (Figure 4). A minimum 
impact on root length (21.91 cm) was observed in S. italica 
plants treated with 0.5 µM Cd (Figure 5). Inhibition of root 
growth is an indicator of the effect of heavy metal stress ( Jadid 
et al., 2017). Root growth in S. italica var. Jingu-21 has been 
reported to decrease after treatment with 200 µM Cd (Tian 
et al., 2017). Reduction in root growth which is demonstrated 
by a reduced root length, by 63.4%, 17.3%, and 69.2%, was also 
reported for cotton plants, Hibiscus cannabinus var. Fuhong 991 
and ZM412, respectively, upon Cd treatment. Root length was 
reduced in parallel with the increase of Cd concentration (Li 
et  al., 2013). Li et  al. (2013) showed that root accumulate 
higher content of Cd and it was found to be “dose-dependent” 
and genotype-dependent. Even though all plants showed a 
decrease of root length after being treated with high concentra-
tion of Cd (20–120 µmol/L), their response and level of sensi-
tivity was different (Li et al., 2013).

Cd toxicity reduce cellular division in the meristematic tis-
sues. It will lead to reduced root length, plant height, and plant 
biomass. Bertels et al. (2020) demonstrated that G1/S transi-
tion of the cell cycle was inhibited during Cd stress in maize. 
This leads to a lower proportion of cells in the S stage of plant 
cell cycle. In addition, Cd stress generates the production of 
reactive oxygen species (ROS). The accumulation of ROS 
might then cause an oxidative post-translational modification 
of cyclin D protein and A-type cyclin-dependent kinase 
(CDKA) (Kintlová et al., 2021).

Cd inhibits the absorption of several macro- and micronu-
trients, such as P, K, Ca, Fe, and Zn, required by plants via 
reducing the transporter selectivity ( Jiang et  al., 2004). 
Cadmium that enters root cells through these transporters fur-
ther blocks the entry of other essential metal ions (Caetano 
et  al., 2015; Thomine et  al., 2000). Generally, Cd transport 
occurs via Fe transporters, such as Iron-Regulated metal 
Transporter-like protein (IRT), yellow stripe-like protein 
(YSL), and natural resistance-associated macrophage protein 
(NRAMP), located in the plasma membrane of root epidermal 
cells (Huang et al., 2020; Ismael et al., 2019; Takahashi et al., 

2012). Therefore, similar symptoms are often observed in 
plants under Cd and Fe stress. Physiological disturbances 
observed in Fe-deficient plants might result from the perturba-
tion of enzymatic activity and cell metabolism (Dobermann & 
Fairhurst, 2000; Rout & Sahoo, 2015). In addition, a previous 
study demonstrated that Cd absorption might interfere with 
Zn influx into plant cells, and subsequent Zn deficiency might 
decrease auxin biosynthesis in wheat (Triticum polonicum) (Taiz 
& Zeiger, 2006; Wanget  al., 2017), consequently inhibiting 
plant root growth (Wang et al., 2017).

Effect of Cd on shoot and leaf number in S. italica

Cd stress significantly affected the number of leaves and shoots 
in Buru Merah (p < .05). The lowest average number of leaves 
was 6.11 and was obtained from plants treated with 1.5 µM 
Cd. It was 46.08% lower than that in the non-treated plants. A 
decrease in the number of leaves by 35.29% and 28.43%, com-
pared to that in control plants, was seen in S. italica plants 
treated with 0.5 and 1.0 µM Cd, respectively (Figure 6).

Similar to other parameters, S. italica plants treated with 
1.5 µM Cd had the lowest number of shoots, which was 0.89 or 
69.23% lower than that in the control plants (Figure 6). Our 
results indicated that the negative effect of Cd stress on the 
number of shoots and leaves in Buru Merah was dose-depend-
ent. At higher Cd concentrations, the negative effects were 
more pronounced. This is in line with the results of a previous 
study conducted by Farooq et al. (2016), who found that a high 
concentration of Cd (5 µM) reduced the number of leaves of 
cotton plants by approximately 72.12% compared to that of 
non-treated plants. The low number of leaves formed in 
Cd-treated plants could be due to Cd-mediated inhibition of 
plant cell division (Abdolali et al., 2015).

Upon entering the cell, Cd interacts with the sulfhydryl 
group (-SH) on the cysteine residue present in the tubulin pro-
tein. This can perturb the formation of microtubules and con-
sequently inhibit plant cell division (Abdolali et  al., 2015). 
Monteiro et al. (2012) revealed that low concentrations of Cd 
treatment (1 µM) block the checkpoint process of cell division 

Figure 4. Effect of Cd stress treatment on root length of the foxtail millet 

(S. italica) accession Buru Merah after 4 weeks of Cd stress treatment. 

Different letters indicate statistically differences at p  value < .05.

Figure 5. Root architecture of the S. italica accession Buru Merah after 

Cd stress treatment for 4 weeks. ((A) non-treated plant; (B–D) plants 

treated with 0.5, 1.0, and 1.5 µM, respectively). 
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in the G2/M phase, while at higher concentrations (10 µM), it 
inhibits the S phase of cell division, further affecting plant 
organogenesis in lettuce plant (Huybrechts et  al., 2019). A 
study performed by Monteiro et al. (2012) demonstrated that 
the formation and multiplication of shoots and leaves decrease 
with increasing Cd concentration. Application of 10 µM Cd in 
lettuce (Lactuca sativa L.) reduced the proliferative index (PRI) 
by 25% compared to that in the control.

The toxicity of plant under Cd contamination is charac-
terized by the generation of ROS. Therefore, mechanism of 
ROS scavenging is crucial. An increased of antioxidant 
enzymes such as glutathione-S-transferase (GST) as well as 
P450 enzymes has been described in rice and in Medicago 
truncatula (Ogawa et al., 2009; Zhang et al., 2013). In addi-
tion, production of ROS triggers upregulation of several 
genes which are involved in the biosynthesis of secondary 
metabolites (Khanna, Jamwal, Sharma, et  al., 2019). It 
includes Phenylalanine Amonia Lyase (PAL), Shikimate 
O-Hydroxycinnamoyltransferase (HCT), Cinnamoyl-CoA 
reductase (CCR) (Kintlová et al., 2021).

Effect of Cd treatment on S. italica panicle biomass

Cd treatment significantly affected S. italica panicle biomass 
(p < .05) (Figures 7 and 8). Treatment with 0.5, 1.0, and 1.5 µM 
Cd for 4 weeks decreased the panicle biomass by 58.9%, 
62.55%, and 68.8%, respectively, compared to that in the con-
trol plants (Figure 7). A previous study conducted by Wei et al. 
(2005) showed that Cd contamination caused reduction of  
plant biomass of Solatium nigrum. Similar results were also 
demonstrated in Kenaf (Hibiscus cannabinus L. cultivar 
Fuhong991) and ZM412 after Cd treatment at 120 µM for 
3 weeks (Li et al., 2013).

In addition, He et al. (2017) reported that cadmium (Cd) 
stress at a high concentration range can cause biomass reduc-
tion, chlorosis, necrosis, and disruption of homeostasis in plant 
organs. Consequently, it inhibits the rate of metabolism in cells, 
thereby reducing the productivity of plants.

Effect of Cd treatment on chlorophyll content of S. 
italica

In this present study, Cd treatment significantly affected the 
total chlorophyll content of Buru Merah (p < .05) (Table 1). 
The lowest chlorophyll content was observed in S. italica plants 
treated with 1.0 µM and 1.5 µM Cd (0.16 mg/g). Our statisti-
cal analysis demonstrated that there was no significant differ-
ence between the total chlorophyll contents of foxtail millets 
treated with 1.0 µM and 1.5 µM Cd. A decrease in chlorophyll 
content corroborated the morphological observations in foxtail 
millet leaves. We observed chlorosis symptoms in the leaves of 
Cd-treated foxtail millet compared to those in the green 
healthy leaves of control plants (Figure 9). Data on chlorophyll 
content were consistent with our previous data on panicle bio-
mass. This suggests that Cd stress inhibits the photosynthesis 
rate of plants and consequently reduces their productivity.

A decrease in total chlorophyll levels has been observed in 
other studies as well—the chlorophyll content of Pisum sati-
vum decreased by 31.7% after treatment with 6 mM  

Figure 6. Effect of Cd stress treatment on the number of shoots and 

leaves in the foxtail millet (S. italica) accession Buru Merah after 4 weeks 

of Cd stress treatment. Different letters indicate statistically differences at 

p  value < .05.

Figure 7. Effect of Cd stress treatment on panicle biomass of the foxtail 

millet (S. italica) accession Buru Merah after 4 weeks of Cd stress treatment. 

Different letters indicate statistically differences at p  value < .05.

Figure 8. Morphology of the S. italica panicle 28 days after treatment (DAT) 

((A) non-treated S. italica plant, (B) 0.5 µM, (C) 1.0 µM, (D) 1.5 µM of Cd).
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Cd ( Januskaitene, 2012), that of corn (Zea mays L.) decreased 
by 37.3% at 20 µM Cd concentration (Wang et al., 2009), while 
that of Phragmites australis decreased by 62.7% at 100 µM Cd 
concentration (Pietrini et al., 2010). Exposure to Cd-contaminated 
soils has been reported to cause chloroplast structural abnormali-
ties. Changes in the structure of chloroplasts in Cd-stressed plant 
cells are caused by swelling of the thylakoid structure. Membrane 
integrity of the thylakoid membrane is also affected (Baryla 
et al., 2001; Najeeb et al., 2011). In addition, a decrease in the 
number of chloroplasts, accumulation of grana, decreased levels 

of starch grains (SG), and accumulation of Postaglobuli (PG) 
have been reported in several other plants for instance, Pircis 
divarticata (75 µM Cd, 14 days after treatment (DAT)) (Ying 
et al., 2010), Hordeum vulgare (5 µM Cd, 15 HSP) (Wang et al., 
2011), and Brassica (Elhiti et al., 2012). These results suggest 
that the effect of Cd might be species- or genotype-dependent 
(Parmar et al., 2013).

Cadmium can also cause changes in chlorophyll pigments 
by replacing the Mg2+ ions in protoporphyrinogen. 
Consequently, the chlorophyll will be non-functional (Cd-Chl) 
(Parmar et  al., 2013). Decreased chlorophyll levels can also 
occur due to Cd-mediated suppression of the activity of the 
δ-minolevunilic acid dehydratase (ALAD) enzyme, which 
plays an important role in chlorophyll biosynthesis (Rout & 
Sahoo, 2015; Sarangthem et  al., 2011). In addition, some 
enzymes which are involved in the biosynthesis of chlorophyll 
are also inhibited during Cd contamination. It includes chloro-
phyll synthase, rubisco, protochlorophyllide reductase, and 
chlorophyllase (Khanna, Jamwal, Gandhi, et al., 2019).

Conclusions
Our study focused on the effect of Cd stress on morpho-phys-
iological characteristics of foxtail millet var. Buru Merah. Cd 
toxicity is characterized by reduce of some morphological 
parameters such as plant height, root length, number of leaves, 
and number of shoots. In addition, physiological parameters 
including panicle biomass and chlorophyll content are also 
affected. Highest concentration of Cd used in this study dem-
onstrated the most reduction of both morphological and physi-
ological parameters. Nevertheless, this study could be taken 
forward toward investigation of other physiological and molec-
ular parameters underlying plant defense mechanism under Cd 
contamination. Also, biochemical assessment could be further 
conducted to enrich the understanding of the effect of Cd con-
tamination on foxtail millet. Our study demonstrated the 
importance of controlling the Cd contamination in the envi-
ronment. Understanding the effect of Cd contamination on 
plant growth and development is essential not only for sustain-
able management in agricultural system and global food secu-
rity, but also important for environmental conservation of 
water resources and human health.

Table 1. Effect of 4 Weeks of Cd Stress Treatment on Chlorophyll Content of the S. italica Accession Buru Merah.

CD CONCENTRATION 
(µM)

CHLOROPHyLL-A 
(Mg/g)

CHLOROPHyLL-B 
(Mg/g)

TOTAL CHLOROPHyLL 
(Mg/g)

% OF REDuCTION

0 (Control) 0.30 ± 0.004c 0.10 ± 0.001c 0.40 ± 0.002c -

0.5 0.21 ± 0.003b 0.06 ± 0.002b 0.28 ± 0.001b 30.4

1 0.12 ± 0.002a 0.04 ± 0.001a 0.16 ± 0.001a 60.5

1.5 0.12 ± 0.002a 0.04 ± 0.002a 0.16 ± 0.002a 61.4

Note. Results are presented as mean ± SD. Data value in the same column followed by the same letter are not significantly different from each other according to Post-
hoc Tukey’s test (p < .05).

Figure 9. Foxtail millet S. italica accession Buru Merah after exposure to 

Cd in 28 DAT. (A)non-treated plants, (B) 0.5 µM Cd treatment, (C) 1.0 µM 

Cd treatment, and (D) 1.5 µM Cd treatment.
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