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Background
Land use/cover is the interface between the atmosphere and 
the biosphere for material and energy exchange. Land use/
cover changes (LUCCs) are triggered by the interplay of socio-
economic and natural environmental factors. Inappropriate 
farming practices, overgrazing, rapid growth in the human 
population (Assefa & Singh, 2017; Dinka & Chaka, 2019; 
Liyehu et al., 2019; Twisa & Buchroithner, 2019; Ullah et al., 
2019), and weak institutional setup (Dinka & Chaka, 2019) are 
among the key anthropogenic driving variables of LUCCs. 
Climate change (Kleemann et al., 2017; Ullah et al., 2019) is 
the significant natural factor triggering LUCCs. Climate vari-
ability influences the succession of plant and animal species 
over fragile mountain ecosystems. Rapid changes in the human 
population initiate the encroachment of farming and grazing 
to the fragile surface topography. Advances in technology and 
weak institutional response promote uncontrolled lumber cut-
ting and overuse of communal mountain resources that further 
encourage increased land degradation and LUCCs.

The LUCCs pose multi-dimensional impacts on local cli-
matic and environmental systems. The event influences the 
temporal and spatial dynamics of environmental and ecological 
systems including greenhouse gas emissions (Pandey et  al., 
2017); biodiversity losses (Barlow et al., 2016; Ellis et al., 2012); 
soil erosion and sedimentation (Assefa & Singh, 2017; Birhanu 
et  al., 2019; Butt et  al., 2015; Debie et  al., 2019; Dinka & 
Chaka, 2019; Gessesse & Bewket, 2014; Liyehu et al., 2019); 

hydrologic processes (Birhanu et  al., 2019; Butt et  al., 2015; 
Dinka & Chaka, 2019); and climate change (Brovkin et  al., 
2013). This further results in the decline of crop production 
and forage shortages for feeding livestock (Assefa & Singh, 
2017; Debie et al., 2019; Dinka & Chaka, 2019; Gessesse & 
Bewket, 2014).

Change in Land use/cover (LUC) directly causes changes 
in the physical characteristics of the land surface, which affects 
radiation, heat, and water vapor exchange. LUCCs influence 
surface energy balance, which is the major underlying process 
for temperature change ( Jain et al., 2017), and other extreme 
weather events like droughts and flooding (Pandey et al., 2017; 
Ullah et  al., 2019). For instance, anthropogenic and LUCC 
induced warming has been accounting for a quarter of the 
overall temperature rise since the year 2001 (Gogoi et  al., 
2019). The gain of no vegetation classes, such as built-up 
landscape, barren surface, and croplands to the loss of vegeta-
tion covers and wetlands caused the rise of the highest mean 
land surface temperature (Balew & Korme, 2020; Gogoi et al., 
2019; Haylemariyam, 2018; Mushore et  al., 2017; Zhou & 
Wang, 2011). The vegetation and surface water bodies’ degra-
dation affects the absorption of solar radiation, surface tem-
perature, evaporation rates, storage of heat, wind turbulence, 
and can change the near-surface atmosphere conditions. 
Whilst, water body, and vegetation cover played an important 
role in mitigating the land surface temperature effect (Zhou & 
Wang, 2011).
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In Ethiopia, the dynamics of LUC accompanied by surface 
temperature variability became a common phenomenon since 
the 20th century (Hurni et al., 2010). Land surface tempera-
ture (LST) is the skin temperature of the surface which refers 
to soil surface temperature for bare soil and canopy surface 
temperature for vegetation cover with varied characteristics of 
the land (Pal & Ziaul, 2017). It is a reflection of the energy 
flow in the interactions between the land surface and atmos-
phere/biosphere. The LST is determined by the effective radi-
ating temperature of the land’s surface that controls through 
the process of surface energy and water exchange with the 
atmosphere (Yuan & Bauer, 2007; Zhang & He, 2013). It uses 
to extract information from various features of the land surface 
(Sinha et al., 2015).

The impacts of LUCCs on environmental recession can be 
measured by land surface temperature (LST) differences in 
diverse attributes of the landscape (Zhang et  al., 2016). 
Significant LST differences can exist over the different LUC 
units and changes because each land cover type possesses 
unique qualities of radiation and absorption (Ahmed et  al., 
2013; Lai et al., 2012; Sinha et al., 2015). As the LUC pattern 
is getting changed, its imprint is reflected on LST (Pal & Ziaul, 
2017). Surface temperature variation can be identified when 
one type of land cover is converted to another. A range of stud-
ies in South East Asia indicated that the types and charters of 
land cover significantly affect LST variation and distribution. 
For instance, the proportion of vegetation covers and water 
bodies per grid cell has a negative significant correlation with 
LST variance (Lai et al., 2012; Li et al., 2013; Peng et al., 2017; 
Wenga et al., 2004; Xiao et al., 2008). Alternatively, the per-
centage of built-up and impervious land or barren surface areas 
have a positive correlation with LST dynamics (Lai et al., 2012; 
Xiao et  al., 2008). Although the accelerated rate of wetlands 
and vegetation degradation observed in the upper Blue Nile 
basin northwest Ethiopia (Birhanu et al., 2019; Hurni et al., 
2010), studies linking LUC units and changes to land surface 
temperature changes are few, they are limited to vegetation 
cover (Meseret, 2019), and urbanization related aspects (Balew 
& Korme, 2020; Haylemariyam, 2018).

LST is an important parameter for environmental studies of 
earth surface and terrestrial radiation over large spatial and 
temporal scales for agro-meteorology monitoring (Zhang & 
He, 2013). The change in LST is a regional climate response to 
global climate change and has research significance in agricul-
ture, hydrology, ecology, environment, climate, and biogeo-
chemistry (He et al., 2017). A study on the relationship between 
LST and LUCCs is essential to address regional environmen-
tal problems and provide a basis for regional planning. 
Retrieving LST from satellite data at regional and local scales 
has an advantage of a wide observation range and strong spatial 
continuity, in particular in areas where meteorological data are 
difficult to obtain. It provides new evidence to fill the knowl-
edge gap in the local-scale temperature effects of different 

landscape characters and biophysical changes induced by 
anthropogenic activity. Thus, the focus of this study is mainly 
aimed to assess the change that occurred in LUCs of the 
Abaminus watershed from 1987 to 2018, and establish its asso-
ciation with LST dynamics in the upper Blue Nile Basin of 
Northwest Ethiopia. The findings of this study were proposed 
pertinent mechanisms for sustainable use of land resources and 
then decreasing of surface temperature distribution on barren 
and no vegetation areas.

Materials and Methods
Description of the study area

The Abaminus watershed is part of the upper Blue Nile Basin 
in the northwest highlands of Ethiopia. The watershed lies 
between 10°38′6.161″N and 11°8′48.328″N latitude and 
38°5′12.436″E and 38°31′49.06″E longitude.

The total area of the study watershed covers about 
172,142.2 ha, and it is characterized by diverse topographic con-
ditions. Gently sloping to slightly undulating plains, rugged and 
dissected hilly mountains and relatively deep river gorges charac-
terize the entire relief. The local climate is dominantly humid 
sub-tropical. The watershed in general falls within three agro-
climatic zones (cool-moist, tepid-moist, and warm highlands) 
that are equivalent to the Ethiopian traditional agro-ecological 
zones of Dega, Woina-Dega, and Kola, respectively with the ele-
vation ranges from 1,145 to 3,534 m.a.s.l. (Figure 1). Rainfall 
varies spatially from 1,326.5 mm over the cool-moist agroecol-
ogy to 917.9 mm in the warm highlands agroecology. More than 
three-fourths of the total rainfall occurs during the summer sea-
son (from June to September).

In all agro-ecological zones of the watershed, subsistence 
primitive crop-livestock mixed-farming agriculture is the 
predominant livelihood activity. Conventional tilling through 
a hand press with ox-pulling traditional technique is the most 
common one of all crop productions. In the Dega agro-eco-
logical zone (⩾2,800 masl cool-moist highlands) barley 
(Hordeum vulgare) and potato (Solanum tuberosum) are chiefly 
produced. Degradation and soil acidity are most likely serious 
problems over the steeper hill slopes in this agroecology. In 
the Woina-Dega agro-ecological zone, tef (Eragrostis tef), bar-
ley (Hordeum vulgare), wheat (Triticum vulgare), and horse 
beans (Vicia faba) are common crops. Tef (Eragrostis tef) and 
Wheat (Triticum vulgare) are predominantly grown crops 
among the others. In the Kola agro-ecological zone, sorghum 
is largely produced. Crop production in the agro-ecological 
zone is suffering perhaps due to erratic rainfall and severe 
ecological degradation.

Communal and privately owned lands and livestock are the 
most important livelihood assets of the local community in all 
of the agroecological zones. The common-pool resources (for-
ests, shrublands, wetlands, and grasslands) are usually managed 
by the local community and administration units. The hilly and 
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steep slope communal lands of the watershed are highly threat-
ened by vegetation degradation and dissected by gullies due to 
uncontrolled overgrazing.

Cattle, sheep, goat, donkey, and horse are reared under the 
cut-and-carry and open-grazing systems. Local labor and fire-
wood/charcoal/sales are alternative means of farmers’ liveli-
hoods to meet household food demands, particularly in kola 
agroecology.

In the study watershed, five major LULC classifications, 
such as forests, shrublands, grasslands, no vegetation, and wet-
lands are identified (Table 1). Privately owned individual 
farmer-managed settlements and croplands are the largest 
land-use systems in the area.

Methodology
Data sources and collection techniques

Remote sensing data are important primarily to understand 
the degree of interaction between the social and ecological 
systems. Space-based observations of Landsat TM 
(Thematic Mapper) image of 1987, 1999, and 2010, and 
Landsat-8 Operational Land Imager (OLI) image of 2018 
were acquired from the US Geological Survey (USGS; 
http://glovis.usgs.gov/). Clear-sky and similarity of the 

ambient temperature were considered for the selection of 
4-year satellite imagery data. For each year, cloud-free from 
January to February, and one frame with Path 169 and Row-
052 satellite imagery data were acquired. The Landsat TM 
and OLI are usually capable of mapping vegetation, mois-
ture, water bodies, and LST dynamics analysis at the water-
shed level (Bai et al., 2008). Based on the results of LUCCs 
detection, three Kebeles (small administrative units) were 
purposely selected across three traditional agro-ecologies. 
The high rate of conversion from vegetation and wetland 
into no-vegetation was the main criterion to select Geses 
from Kola, Yebuchir-Yewoya from Woina-Dega, and Dequat-
Goshera from Dega agroecology. From the selected Kebeles, 
about 164 household heads were selected using a systematic 
sampling technique. A household survey was conducted 
with the selected household heads using a semi-structured 
questionnaire.

Methods and Procedures of Analysis
Calculation of spectral indices

When the land surface reflectance is measured, an atmospheric 
correction should perform to correct for atmospheric effects on 
satellite scenes (Zhang et al., 2010).

Figure 1.  Map of the study watershed.

Table 1.  Descriptions of Land Use/Cover Classes.

Class/uses Descriptions

Wetlands All forms of water, including rivers, lakes, ponds, and swamps

Forests Natural and afforested distributed vegetation with dense canopies

Shrublands Natural and man-made vegetation dominated by shrubs, including grasses, herbs, and bushes

Grasslands The mixtures of grasslands and other forms of undergrowth

No vegetation Including harvested cropland, barren surfaces (soil, roads sandy, and rocky), and settlement
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The spectral indices’ raster of six bands of Landsat-5 and 8 
with a 30 m spatial resolution was used to classify the land use/
covers and to quantify LST (Table 2). Spectral indices are the 
combinations of spectral reflectance from two or more wave-
lengths that indicate the domination of certain characteristics 
of land cover (Gašparović et al., 2019). Normalized difference 
vegetation index (NDVI), modified normalized difference 
water index (MNDWI), normalized difference soil index 
(NDSI), and normalized difference bareness index (NDBaI) 
were applied to develop spectral indices.

The main principle of detecting vegetation using NDVI is 
vegetation highly reflective in the near-infrared and high 
absorptive vegetation pigments (chlorophyll) in the visible red. 
The contrast between these channels can be used as an indica-
tor of the status of the vegetation.

NDVI can be computed as
Near infrared Visible red
near infrared

−

++Visible red   (1)

Where Near-infrared represents band 4 in Landsat-5 and 
band-5 in Landsat-8. Red represents band-3 for Landsat-5 
and band-4 for Landsat-8.

The NDVI is a biophysical parameter that relates to photo-
synthetic vegetation to offer valuable information about the 
dynamics of vegetation covers over time (Xie et  al., 2008). 
From other various available vegetation indices, the NDVI is 
widely employed since it normalizes the effect of changes in 
illumination conditions and surface topography (Reddy & 
JangaReddy, 2013). Genesis et al. (2015) recommend that a lin-
ear model with NDVI time-series analysis, perhaps use to best 
fit the cyclic vegetation difference into a line. Values of NDVI 

ranges from −1 to 1, where vegetated areas generally result in 
high values because of their relatively high near-infrared reflec-
tance and low visible reflectances. Determination of the thresh-
old value is the main problem of the automatic extraction of 
individual land cover classification from a single index raster. It 
is a difficult and lengthy process (Xian et  al., 2009). Value 
ranges of the index for different land cover/use types can be 
found in certain ranges and are specific to each satellite imagery 
scene (Lee et al., 2011). The K-means unsupervised classifica-
tion method can be used to extract a specific single index raster 
(Li et. al, 2017). It was used as a popular algorithm for classify-
ing NDVI data into k-clusters, such as grasslands, shrublands, 
and forests. Vegetation class was classified into sparse for grass-
lands, moderate for shrublands, and dense to forests.

Modified normalized difference water index (MNDWI) is 
one of the methods of remote sensing to measure surface water 
characteristics where field investigations are difficult to carry 
out (Soti et  al., 2009). It is mostly computed by using (Xu, 
2006):

	 MNDWI GREEN MIR
GREEN MIR

=
−
+

	 (2)

The indices of MNDWI range between 1 and −1. This requires 
reclassification to classify surface water from other land use 
land covers. Indices greater than zero, commonly represent 
standard thresholds to detect the distribution and extent of 
surface water (Xu, 2006). The MNDWI is one the most widely 
used water indices for surface water mapping as the built-up 
land, soil, and vegetation all have negative values and thus is 
notably suppressed and even removed (Campos et  al., 2012; 

Table 2.  Bands Micrometers and Resolution of Thematic Mapper (Landsat-5) and Operational Land Imager (Landsat-8).

Landsat Bands Wavelength (µm) Resolution (m)

Landsat-5™ Band 2 Green 0.52–0.60 30

Band 3 Red 0.63–0.69 30

Band 4 NIR (near-infrared) 0.77–0.90 30

Band 5 MIR (middle infrared) 1.55–1.74 30

Band 7 MIR (middle infrared) 2.9–2.35 30

Band 6 Thermal infrared 10.40–12.50 60 × 30

Landsat-8 OLI Band 3 Green 0.53–0.59 30

Band 4 Red 0.64–0.67 30

Band 5 NIR (near-infrared) 0.85–0.88 30

Band 6 MIR (middle infrared) 1.57–1.65 30

Band 7 MIR (middle infrared) 2.11–2.29 30

Band 10 Thermal infrared (TIR)1 10.6–11.19 100

Band 11 Thermal infrared (TIR)2 10.50–12.51 100

Downloaded From: https://staging.bioone.org/journals/Air,-Soil-and-Water-Research on 02 Dec 2024
Terms of Use: https://staging.bioone.org/terms-of-use



Debie et al.	 5

Duan & Bastiaanssen, 2013; Hadeel et al., 2011; Poulin et al., 
2010).

The combination of the normalized difference bareness 
index (NDBaI) with the normalized difference soil index 
(NDSI) is the proper method to derive the accuracy class of no 
vegetation (Zhao & Chen, 2005).

	 NDSI MIR Green
MIR Green

=
−
+

	 (3)

Where, MIR is band-5 for the reflectance of Landsat-5 and 
band-7 for Landsat-8 and the Green represents band-2 for 
Landsat-5 and band-3 for Landsat-8 (Deng et al., 2015). This 
is attributable to only soil more reflective in band-5 of 
Landsat-5 and band-7 of Landsat-8 (Rogers & Kearney, 
2004).

Normalized difference bareness index (NDBaI) was pro-
posed to recognize different types of bare areas that formed due 
to physiographic and anthropogenic factors (Li et  al., 2017; 
Zhao & Chen, 2005). The index is based on significant differ-
ences in the spectral signature in the near-infrared between 
bare soil and background. The NDBaI is calculated as follows 
(Zhao & Chen, 2005):

	 NDBaI SWIR TIR
SWIR TIR

=
−
+
1
1

	 (4)

Where, SWIR1 is a short-wavelength infrared band, such as 
Landsat-5 band-5 and Landsat-8 band-6 and TIR is the ther-
mal infrared band, such as band-6 for Landsat-5 and band-10 
for Landsat-8. Based on the k-mean unsupervised classifica-
tion, the class with the highest mean value represents bare land 
and the second class represents the built-up class (Li et  al., 
2017).

All spectral indices were calculated using the raster based 
on the respective index equation. The maximum likelihood 
supervised classification was used to compare the results 
K-means unsupervised method. It calculates the relative class 
membership likelihoods incorporating all training sets for 
each pixel in an image. All rasters with an extracted certain 
land cover were merged to generate land use and cover classes 
in one raster. According to the mean value of the classified 
indices, the automatic algorithm extracts the final land cover 
classes. The LUCCs were calculated using a land-use transi-
tion matrix. It indicates the amount of different land uses/
covers that remain unchanged and quantifies the gains and 
losses during the study periods. The method is employed to 
describe the conversion size land-use types in three periods. 
The matrices of land-use transition were developed in the 
first period from 1987 to 1999, the second period from 1999 
to 2010, and the third period from 2010 to 2018. Factors that 
drive the conversion of one LUC into another LUC were 
described in percentage (Figure 2).

LST extraction from thermal bands

Developing methodologies to measure land surface tempera-
ture (LST) from space is being increasingly recognized (Li 
et al., 2013). The use of satellites in the TIR is important to 
estimate reliable LST over large spatial and temporal scales as 
it is practically difficult to obtain such information from 
ground-based measurements (Ermida et  al., 2017). LST is 
detected by infrared thermal sensors and provides finer spatial 
resolution only under clear-sky conditions (Liang et al., 2019). 
The atmospheric effects on top of atmosphere (TOA) spectral 
radiance are usually administered by atmospheric transmit-
tance (T), atmospheric path radiance (Lu), and sky radiance 
(Ld) (Chatterjee et al., 2017). The spectral radiance model was 
employed to retrieve LST from Landsat-5 TM and Landsat-8 
OLI (Hua & Ping, 2018). Thermal infrared data (band-6 from 
Landsat-5 and band-10 from Landsat-8) were used. From 
Landsat-8, thermal band-10 was used because thermal band-
11 data are significantly more contaminated by thermal energy 
from outside the thermal field of view (stray light) than band 
10 (USGS, 2016). The thermal infrared bands were used to 
estimate LSTs according to the reference values, calibration 
data, and empirical models widely used in land surface climate 
studies.

Conversion of digital number into spectral radiance.  Based on the 
reference values in the sensor handbook, the digital number 
(DN) values convert into spectral radiance (Lʎ) (USGS, 2016). 
The conversion of DN values of the thermal bands into abso-
lute radiance values is the standard method for retrieving LST 
from the raw Landsat dataset (Chander et  al., 2009; USGS, 
2016; Weng, 2009). The DN is converted into space reaching 
radiance or top-of-atmospheric (TOA) radiance that is directly 
measured by remote sensing instruments (Chander & 
Markham, 2003). The TOA reflectance is a unitless measure-
ment that provides the ratio of radiation reflected by the inci-
dent solar radiation on a given surface. It compensates for 
different values of solar irradiance arising from spectral band 
differences.

In Landsat-5, TOA or spectral radiance (Lʎ) was computed 
as:

L
Lmax Lmin

Qcalmax Qcalmin x Band Qcalmin Lmin
=

−( )
−( ) −( ) +6

  (5)

where; Lʎ is TOA radiance at the sensor’s aperture in watts/
(m2 × ster × µm); Lmaxʎ is radiance maximum constant value 
from the metadata file of the band 6, Lminʎ is radiance mini-
mum constant value from the metadata file of band 6, Qcalmax is 
the Quantize–Cal-Max constant values from the metadata file 
of band 6, and Qcalmin is Quantize–Cal-Min constant values 
from the metadata file of the band 6.

ʎ
ʎ ʎ

ʎ
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In Landsat 8 spectral radiance computed as L

ML Band AL
−

= × +
,

10 	 (6)

where; Lʎ represents the spectral radiance, ML represents the 
band-specific multiplicative rescaling factor, and AL represents 
the band-specific additive rescaling factor.

Conversion of spectral radiance (Lʎ) to brightness temperature 
(T).  After converting a digital number to reflection, the TOA 
radiance was then converted to the surface leaving radiance or 
brightness temperature by removing the effects of the atmos-
phere in the thermal region (Barsi et al., 2005). It is calculated 
with an assumption of unity emissivity and using pre-launch cali-
bration constants. The following equation was used in the tool’s 
algorithm to convert reflectance to brightness temperature (T).

	 T K

ln K
L

=
+









2
1

1
	 (7)

Where T is the temperature in Kelvin (K), K1 is the pre-launch 
calibration constant 1 in W/(m2 srµm), K2 is the pre-launch 
calibration constant 2 in Kelvin (K) and Lʎ is spectral radiance. 
For obtaining the results in degree Celsius (°C), the radiant 
temperature is revised by adding the absolute zero (approxi-
mately −273.15°C), implying that C T= − 273 15. .

The emissivity correction.  The calculated radiant temperature 
was corrected for emissivity by using the NDVI values. After 
converting the brightness temperature values into degree Cel-
sius (°C), the emissivity corrected LST was calculated as 
(Sobrino et al., 2004):

	 Emissivity E 0.004 PV 0.986( ) = × + 	 (8)

Where the proportion of vegetation(PV)

NDVI NDVImin
NDVImax

,

[ ]
[

=
−
−−









NDVImin]

2

The last step of the LST or emissivity-corrected LST was 
retrieved (Grover & Singh, 2015) as

	 LST T
T
p lnE

=

+








1

	 (9)

Where, LST is the land surface temperature in Celsius, T is at 
sensor brightness temperature (°C) in equation seven, ʎ is The 
wavelength emitted radiance for which peak response and the 
average of limiting wavelength of band-10 or band-6 (Table 2), 
Eʎ is the calculated emissivity value, and p = h × c/α  
= 1.438 × 10−2 mk, where α is the Boltzmann constant 
(1.38 × 10−23 JK−1), h is Planck’s constant (6.626 × 10−34 Js) and 
c is the velocity of light (3.0 × 108 ms−1).

Statistical analysis

Descriptive statistics, such as percentage, range, and mean were 
used to analyze the changes of land use/covers and land surface 
temperature. Data generated from household surveys were pre-
sented using percentage values to identify the driving forces of 
land use/cover changes. The mean, range, and standard devia-
tion of each LUCs and LST change were calculated using 
ArcGIS software. Simple linear regression was used to show 
the LST change over three decades. Data generated from 
household surveys were presented using percentage values to 
identify the driving forces of land use/cover changes.

Results and Discussion
Dynamics of land surface temperature (LST)

Figure 3 indicates land surface temperature (LST) distribu-
tions were varied from 4.99°C to 44.1°C in 1987, from 7.5°C 
to 45.93°C in 1999, from 9.5°C to 43.1°C in 2010, and from 
10.1°C to 43.4°C in 2018. In all years, the high LST was dis-
tributed in the lower elevation of the study area (Figures 1 and 
3). The influence of elevation also significantly affects LST 
(Peng et  al., 2017). LST significantly raised with decreased 
altitude, implying that in the area with a relatively high eleva-
tion difference the LST noticeable vertical variation of decrease 
with altitude increase (Deng et al., 2018). This may be due to 
LST being affected by air temperature decrease with elevation 
and the surface vegetation in a high elevation area is relatively 
good. In high elevation areas, therefore, the solar radiation 
received by the ground surface mostly spread in the latent heat 
form and the LST is low.

The average LST was 27.9°C in 1987, 30.8°C in 1999, 
30.83°C in 2010, and 31.65°C in 2018 (Figure 4). Results from 
curve fitting regression indicate that consistent increment of 
mean LST was explained by time at R2 = .824 over three dec-
ades. The LST was increased by 2.88°C, 0.01°C, 0.79°C in the 
first period (from 1987 to 1999), in the second period, and the 
third period of the study in that order (Figure 5). In the first 
period, the highest LST change was observed when compared 
to other periods of the study. This may be due to the occurrence 
of metrological drought across the study area in 1999, which in 
turn contributes to the increment of LST on vegetation bio-
mass. Over three decades, the mean LST was increased by 
3.67°C. Based on the dataset from 1850 to 2015, the mean land 
surface air temperature has increased by 1.53°C, while global 
mean surface temperature has increased by 0.87°C ( Jia et al., 
2019). Inconsistent with the global warming trend, the mean 
LST was increased by 3.88°C in the last 20 years (Tan et al., 
2020) and by 0.10°C year−1 (Zhao et al., 2019) in China. The 
land surface temperature of most of the areas of all land cover 
features have significantly increased overtimes (Majumder 
et al., 2020; Zhao et al., 2019). Land degradation due to land 
use/cover changes contributes to about 23% of anthropogenic 
emissions of carbon dioxide (CO2), methane (CH4), and 
nitrous oxide (N2O) ( Jia et al., 2019).

ʎ
ʎ

ʎ

ʎ ʎ
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Land use/covers (LUCs) and land surface 
temperature (LST) distribution

Of the total area, the forest cover was 8%, 7.2%, 4.5%, and 3.2% 
in 1987, 1999, 2010, and 2018, respectively (Figure 3). In the 
forest area, the average value of LST was 25.27°C over 31 years 
(Figure 4).

The forest cover declined by 8,220.5 ha over 31 years, imply-
ing that on an average 265.2 ha year−1 forest degradation 
(Figure 6). Deforestation was carried out on 1,386.1, 4,660.8, 
and 2,173.6 ha lands in the first period (from 1987 to 1999), in 
the second period (from 1999 to 2010), and the third period 
(from 2010 to 2018), in that order (Figure 6). This implies that 
on average, 115.51, 423.71, and 271.7 ha year−1 forest areas 
were cleared in the first, second, and third periods of the area, 
respectively. In the second period, deforestation was higher by 
308.2 and 152.01 ha year−1 compared to the first and third peri-
ods, respectively. Concerning deforestation and other global 
factors, the average LST was varied from 23.75°C in 1987 to 
26.54°C in 2018, implying that it was increased by 2.79°C over 
31 years in the forest area (Figure 7).

From the total, shrubland contained 16.7% in 1987, 17.1% 
in 1999, 14.2% in 2010, and 9.6% in 2018. From 1987 to 2018, 
12141.4 ha shrublands were lost, with an average of 391.66 ha 
year−1 (Figure 6). Over the three decades, the average LST was 
28.2°C in the shrublands (Figure 7). Shrubland coverage was 
increased by 771 ha in the first period, while it was declined by 
5,080.2 ha in the second period (Figure 6). In the third period, 
shrubland was decreased also by 7,832.2 ha. The average clear-
ing rate of shrubland was increased by 517.2 ha year−1 in the 

third period compared to the second period. In the shrublands, 
LST was increasing from 26.57°C in 1987 to 28.98°C in 2018, 
indicating that it was increasing by 2.4°C over the 31 years 
(Figure 7).

The analysis of LUC dynamic trends over the 31 years 
showed grassland covered 12.5% in 1987, 10.4% in 1999, 8.4% 
in 2010, and 7.6% in 2018. The coverage proportion was con-
sistently decreasing by 8,380.3 ha over the three decades, with 
an average of 270.33 ha year−1 (Figure 6). Grassland area 
decreased by 3,654.6, 3,485, and 1,240.7 ha in the first, second, 
and third periods in that order (Figures 6 and 8). This further 
implies that an average grassland area was decreasing by 304.55, 
316.82, and 155.1 ha year−1 in the first, second, and third peri-
ods, respectively. During the second period, the mean lost 
grassland was higher by 12.27 and 161.72 ha year−1 when rela-
tively seen for the first and third periods, respectively. In the 
grassland area, LST increased from 27.82°C in 1987 to 30.54°C 
in 2018, signifying that it was increasing by 2.72°C over the 
three decades (Figure 7).

Areas with no vegetation were covered by 61.7% in 1987, 
64.9% in 1999, 72.7% in 2010, and 79.4% in 2018 (Figure 6). 
In the area with no vegetation, the mean LST was 32.3°C over 
the three decades (Figure 7). The highest average LST was 
retrieved from the area with no vegetation cover when com-
pared to other LUCs (Figure 7). The average value of LST over 
the 31 years in the area with no vegetation cover was higher by 
7.58°C from wetlands, 7.03°C from forests, 4.1°C from shrub-
lands, and 2.57°C from grasslands. Barren land showed the 
highest mean value of LST, while shrubs and sparse vegetation 
cover classes exhibited the lowest mean LSTs (Haylemariyam, 

Figure 2.  Workflow of LUCs analysis method.
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Figure 3.  LST distribution of the study watershed.

2018). The LSTs in areas with high human activity intensity 
like cultivated land were high but low in areas with low inten-
sity of human activity, such as in water bodies, forests, shrub-
lands, and grasslands (Deng et  al., 2018; Ullah et  al., 2019). 
Haylemariyam (2018) noted that the LST value of barren land 
surface exceeds other LUC classes with a mean value of 
26.59°C but vegetation covers like shrubs and forests showed 
the lowest LST values having a mean of 24.57°C.

The result indicates that areas with no vegetation cover were 
incessantly increasing by 30,499.1 ha over three decades, with a 
mean of 983.84 ha year−1 (Figures 6 and 8). No vegetation areas 
were increasing by 5,555.2, 13,375.6, and 11,568.3 ha in the 
first, second, and third periods, respectively. This indicates that 
on average 462.93, 1,215.96, and 1,446 ha year−1 of no vegeta-
tion covers were increasing in the first, second, and third peri-
ods, respectively. In the third period, the average increment of 
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Figure 4.  Mean LST in different years at watershed level. Figure 5.  Mean LST difference over different years at watershed level.

Figure 6. P roportion of LUCs from 1987 to 2018 (in ha).

Figure 7.  LST (in °C) differently in response to LUCs in different years.
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Figure 8.  LUCs of the study watershed.

Figure 9.  LST dynamics (in °C) over three decades due to conversion from one LUC to others.
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no vegetation areas was higher by 983.1 ha year−1 for the first 
and 230 ha year−1 for the second period. In the no vegetation 
area, the average LST was ranging from 30.147°C in 1987 to 
33.42°C in 2018, implying that it was increased by 3.05°C over 
the three decades (Figure 7).

From the total area of the study watershed, wetlands were 
covered by 1.1% in 1987, 0.32% in 1999, 0.24% in 2010, and 
0.05% in 2018. Wetlands were constantly decreasing by 
1,756.9 ha over the three decades, with an average of 56.7 ha 
year−1. They decreased by 1,285.5 ha in the first period, 149.6 ha 
in the second period, and 321.8 ha in the third period. On aver-
age, wetlands declined by 107.125 ha year−1 in the first period, 
13.6 ha year−1 in the second period, and 40.225 ha year−1 in the 
third period. In the first period, the wetlands disappeared by 
93.525 ha year−1 higher than for the second period and 66.9 ha 
year−1 for the third period. Because of the declining of wetlands 
coverage, the mean LST of the wetlands was decreasing from 
24.63°C in 1987 to 18.96°C in 2018 (Figure 7). In the wet-
lands, the average LST was 24.72°C over the three decades. 
The least LST was observed in the wetland ecosystems when 
compared to other LUCs. Wetland surfaces play an important 
regulatory role in reducing LST and mitigating thermal effects 
on the ground (Tan et al., 2020). The distribution of average 
changes in LST in the water bodies showed the lowest increase 
than other LUCs followed by forest lands (Hua & Ping, 2018). 
Despite the enhanced available energy, the average daytime 
surface temperature in the wetlands was cooler by 5.1°C than 
the nearby cropland surface temperatures (Stanley, 2018).

Landuse/cover changes and surface temperature 
dynamics

In the first period, 38.2% of forests changed into other LUCs. 
Of the total changed, the highest proportion (32%) of forests 
lost at the gain of shrubs. During the second period, a more 
transition rate (53.5%) was observed compared to other peri-
ods of the study. From this, 44.3% of the forest was changed 
into shrubs. In the third period, 46.6% of forest lands were 
lost at the gains of other LUCs. Of this, 30.1% was modified 
into shrublands. Over the three decades, of the total 72% 
losses of forests, 40.6%, 17.2%, and 14.2% were converted 

into shrublands, no vegetation, and grasslands, respectively 
(Table 4). This may be due to the encroachment of croplands 
at the expense of grasslands, shrublands, and forests (Assefa 
& Singh, 2017; Barlow et al., 2016; Liyehu et al., 2019; Twisa 
& Buchroithner, 2019). The conversion of forests into shrub-
lands and grasslands was driven by cutting live vegetation 
(ranked by 79%), overgrazing (ranked by 87.6%), and weak 
institutional arrangement (ranked by 73%) (Table 3). Table 3 
indicates that clearing of the forest into no vegetation was 
also influenced by the encroachment of croplands (rated by 
81%) and weak institutional arrangement (ranked by 69%). 
Expansion of cultivated land and settlements and cutting of 
vegetation for charcoal production and construction were the 
most crucial drivers of deforestation (Kindu et  al., 2015; 
Liyehu et al., 2019). Deforestation, removing the natural veg-
etation cover, leads to soil erosion and ecosystem disturbance, 
alters surface roughness and reduces evapotranspiration, and 
increased albedo (Yin et al., 2018). Deforestation was the sec-
ond most contributing factor to the increment of LST by 
3.22°C (Figure 9). The increase of LST was largely deter-
mined by deforestation (Meseret, 2019). Because of anthro-
pogenic disturbances, deforestation has a significant warming 
effect in the tropical regions with little seasonality 
(Danneyrolles et al., 2019; Findell et al., 2017; Muro et al., 
2018) since it systematically results in higher radiative fluxes 
leaving the surface (Duveiller et  al., 2018). Deforestation-
induced warmer temperatures tend to reduce land carbon, 
mostly because of increased heterotrophic respiration (Harper 
et al., 2018). From biophysical and biogeochemical points of 
view, conversion of forests into croplands, and open lands 
appears to be the worst land cover transition for climate 
because it constantly leads to local warming as a result of 
lower carbon stocks and considerable emission of nitrous 
oxide and methane (Duveiller et al., 2018).

From the total area, a consistent increasing loss of shrubland 
was observed at 42.3% in the first, 55% in the second, and 
56.3% in the third period (Table 4). In the first period, from 
42.3% lost shrubland, 28.3% was cleared for crop production, 
and 11.5% was developed into the forest. In the second period, 
from 55% lost shrubland, 29.5%, and 21.8% were cleared to the 
gain of cultivated lands and grasslands, respectively. Of the 

Table 3.  Conversion of Forest and Shrubs into Other LUCs Like Grasslands and No Vegetation (Such as Croplands).

The most driving factors (%) Forest into 
shrubland, 
grasslands

Forest into 
no vegetation

Shrublands 
into 
grasslands

Shrubland 
into no 
vegetation

Grasslands 
into no 
vegetation

Cutting of vegetation biomass 79 7 6 2.8 12.2

Cropland encroachment 2 81 16 77 74

Overgrazing 87.6 14 15 77.5 51

Weak institutional arrangement 73 69 48 66 62

Note. Multiple responses were considered.
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total lost shrublands, 27.9% were cleared into croplands, fol-
lowed by 23.5% were converted into grasslands in the third 
period. Over the three decades, from 77.7% lost shrublands, 
53.8% were cleared into no vegetation (croplands) and 20.25% 
were modified into grasslands. This agrees with the expansion 
of cultivated lands at the expense of shrublands (Barlow et al., 
2016; Liyehu et  al., 2019; Twisa & Buchroithner, 2019). 
Cropland expansion and overgrazing due to the weak institu-
tional arrangement were the major driving factors for the clear-
ing of shrublands into no vegetation (Table 3). The clearing of 
shrublands caused an increase of LST by 2.02°C over the three 
decades (Figure 9). Changing shrublands alter the radiative 
and non-radiative properties of the land surfaces (Duveiller 
et al., 2018).

The grasslands were decreased by 78.7% in the first, 78.1% 
in the second, and 76.3% in the third period. The highest loss 
was observed in the first period. During this period, from the 
total 78.7% lost, 55.5% changed into croplands, and 20.9% 
converted into shrublands (Table 4). This further implies that 
4.3% and 1.61% of the grasslands were lost to the gain of 

croplands and shrublands per year, respectively. Of the total lost 
area, 63.3% was changed into cropland and 13.9% was con-
verted into shrubland in the second period. In the third period, 
63.4% changed into cropland and 12.4% changed into shrub-
land. An area covered with grassland was lost by 89.4% of the 
gain of other LUCs over the three decades. Of the total lost, 
61.8% was cleared into no vegetation cover (Table 4). The 
grassland can be converted into no-vegetation, including crop-
lands and barren surfaces due to overgrazing (highly rated 
77.5%) and weak institutional arrangements, highly rated by 
76% (Table 3). The results of this study agree with the encroach-
ment of croplands at the expense of grasslands (Assefa & 
Singh, 2017; Liyehu et al., 2019; Twisa & Buchroithner, 2019). 
Clearing of grasslands into barrenland and the soil surface con-
tributed to increasing LSTs by 0.45°C (Figure 9). The conver-
sion of grasslands into croplands has consistently reduced the 
amount of energy available for evapotranspiration whilst 
brightening the surface (Duveiller et al., 2018).

The largest area of the wetlands was converted into no-veg-
etation. From the total lost area of the wetlands, 78.5% (in the 

Table 4.  Transition Matrix of LUCs in Abaminus Watershed Between 1987 and 2018 (Unit: Hectare).

Periods LUCs Changed land use/covers Losses (%)

Wetlands (%) No-vegetation (%) Grasslands (%) Shrubs (%) Forests (%)

1987–1999 Wetlands 13.3 78.5 4.4 3.4 0.4 86.7

No-vegetation 0.3 84.5 8.4 6.1 0.7 15.5

Grasslands 0.1 55.5 21.3 20.9 2.2 78.7

Shrubs 0.1 28.3 2.4 57.7 11.5 42.3

Forests 0.1 3 3.1 32 61.8 38.2

1999–2010 Wetlands 36.4 59.9 0.6 1.4 1.7 63.6

No-vegetation 0.2 92.2 4.4 2.5 0.7 7.8

Grasslands 0 63.3 21.9 13.9 0.9 78.1

Shrubs 0 29.5 21.8 45 3.7 55

Forests 0 4.7 4.5 44.3 46.5 53.5

2010–2018 Wetlands 15.2 84.5 0.1 0.1 0.1 84.8

No-vegetation 0 94.8 3.8 1.2 0.2 5.2

Grasslands 0 63.4 23.7 12.4 0.5 76.3

Shrubs 0 27.9 23.5 43.7 4.9 56.3

Forests 0 13.3 3.2 30.1 53.4 46.6

1987–2018 Wetlands 3.4 94.5 0.8 0.9 0.4 96.6

No-vegetation 0 93.8 3.6 2.2 0.4 6.2

Grasslands 18.9 61.8 10.6 7.7 1 89.4

Shrubs 0 53.8 20.2 22.3 3.7 77.7

Forests 0 17.2 14.2 40.6 28 72
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first period), 59.9% (in the second period), and 84.5% (in the 
third period) were converted into no-vegetation. The result 
indicates that the largest lost area of wetlands at the gain of 
no-vegetation was observed in the third period when compared 
to the first and second periods. Of the total lost area of the 
wetlands (96.6%), 94.5% were to the gains of no-vegetation 
over the three decades (Table 4) due to drainage for irrigated 
croplands (83.6% highly rated), sedimentation (71% highly 
rated), and weak institutional principles and arrangement (73 
% highly rated) (Table 5). Loss of wetlands or water surface 
changes over time were the major environmental degradation 
indicators mainly identified in the arid environment (Hadeel 
et al., 2011). Figure 9 reveals that wetland disappearance con-
tributed to the increment of LST by 11.5°C over 31 years, 
implying that on average 0.37°C year−1 due to wetlands losing. 
Despite a decline in methane oxidation emission following 
wetland drainage, conversion of wetlands into cropland results 
in a considerable net increase in land surface temperature or 
heat-trapping (Muro et al., 2018). Anthropogenic disturbance 
and rising LST have great effects on the status of wetlands 
changing their hydrological and evapotranspiration regimes 
(Muro et al., 2018), and carbon storage (Moomaw et al., 2018). 
Drainage and drying of wetland soils increase microbial 
decomposition of stored organic carbon and cause to emit sig-
nificant amounts of this stored natural carbon into the atmos-
phere and reduce the ability of wetlands to sequester additional 
carbon (Pendleton et al., 2012). Preventing further wetland loss 
is found to be crucial to protect carbon stores and in limiting 
future emissions to meet climate goals, but is seldom consid-
ered (Moomaw et  al., 2018). Moomaw et  al. (2018) further 
noted that wetlands are among the most carbon-rich sinks on 
the planet sequestering approximately as much carbon as do 
global forest ecosystems.

The area with no vegetation was covered by 3.6% of grass-
lands, 2.2% of shrublands, and 0.4% of forest over the three 
decades (Table 4). From the total planted area, an area with no 
vegetation was vegetated by 8.4% grasslands and 6.1% shrub-
lands in the first period; by 4.4% grasslands, and 2.3% shrub-
lands in the second; and by 8% grasslands and 1.2% shrublands 
in the third period. This indicates that the largest area with no 
vegetation was consistently covered by grasslands, followed by 
shrublands. Table 5 indicates that from the total respondents, 
76.3% reported that fallow practice was the most important 
factor to change cultivated and barren land surfaces into grass-
lands. Of the total, 89.1% reported, plantation of eucalyptus 
and other exotic plant species on unproductive croplands and 
degraded communal lands was rated a highly important factor 
in the conversion of no vegetation into shrublands (Table 5). A 
realistic representation of the Spatio-temporal dynamics of key 
land-use practices, such as fallowing, and abandonment of land, 
afforestation, and reforestation is one of the priorities of earth 
system modeling (Chen et al., 2019). Figure 9 reveals that the 
plantation of shrubs and trees has also contributed to the 
decrease of LST by 3.77°C, with an average rate of 0.12°C 
year−1. Thomas et al. (2018) reported that daytime air tempera-
tures under shrubs and trees were cooler compared with other 
LUCs areas.

Afforestation is being changed of other LUCs into forested 
areas (Hu et  al., 2019). Afforestation of soil and the barren 
surface has contributed to the decline of LST by 5.42°C, on 
average, by 0.17°C year−1 (Figure 9). The mean LST of green 
space was 3°C lower than impervious and barren soil surface, 
implying the important role of plantation practice in mitigat-
ing surface temperature (Estoque et  al., 2017). Forests can 
serve as a thermal insulator compared with open areas and such 
buffering effect has the potential to reduce the severe impacts 

Table 5.  The Most Driving Factors for the Conversion of One Land Cover into Another.

Principal driving factors Wetlands into 
grasslands (%)

Wetlands into no 
vegetation (%)

Wetlands into 
shrublands (%)

Sedimentation 71 21 8

Rising of temperature 24.4 66.1 11.5

Drainage for irrigated croplands 14.3 83.6 2.1

Weak institutional arrangement 19 73 8

Recurrent drought 29.4 33.5 38.1

Principal driving factors No-vegetation into 
grasslands (%)

No vegetation into 
shrublands, forests (%)

No vegetation into 
wetlands (%)

Enabled institutional arrangement 45 71.7 53.3

Fallowing practice 76.3 14.4 8.6

Enclosure management 64.3 24.3 72.4

Plantation of different plant species 5.6 89.1 5.3

Note. Multiple responses were considered.
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of climate change on the forest ecosystem (De Frenne et al., 
2019). Re-/afforestation as local mitigation and adaptation 
measures could be an attractive strategy because of the increas-
ing annual cooling effects of forest cover (Bright et al., 2017). 
Afforestation/reforestation, and avoiding deforestation encour-
age carbon capture and storage; can support large-scale carbon 
dioxide (CO2) removal from the atmosphere to limit global 
warming to below 2°C by 2,100 (Harper et al., 2018). Reducing 
emissions from tropical deforestation and forest biomass deg-
radation is beneficial for climate mitigation for both biogeo-
chemical and biophysical reasons (Duveiller et al., 2018; Syktus 
& McAlpine, 2016). Syktus and McAlpine (2016) noted that 
restoration of forest and shrubland biomass triggers a positive 
feedback loop between the land surface and the atmosphere by 
increasing an evaporative fraction (proportion of latent heat 
flux relative to the sensible heat flux), eddy dissipation, and tur-
bulent mixing in the boundary-layer resulting in the enhanced 
cloud formation and precipitation over the restored areas.

Restoration of wetlands decreased LST by 5.21°C, implying 
that on an average decline of 0.17°C year−1. The conversion of 
the bare surface into water bodies reduced surface temperatures 
by 4.5°C in Zimbabwe (Mushore et al., 2017). Water bodies 
play a significant regulatory role in reducing LST and mitigat-
ing thermal effects on the ground (Tan et al., 2020). Tracts of 
open water between the patches of wetland vegetation could 
delay heat exchange with the atmosphere and keep tempera-
ture cooling that helps counteract rising temperatures on a 
local scale (Stanley, 2018). Preventing and restoring wetland 
ecosystems can regenerate their ability to remove and sequester 
CO2 from the atmosphere (Moomaw et  al., 2018). Wetland 
restoration has significant implications for an atmospheric car-
bon cycle (C-cycle) because a substantial portion of the soil 
carbon pool is stored in the wetlands (Moomaw et al., 2018).

Conclusion
Retrieving LST from satellite data fills the knowledge gap in 
the local-scale temperature effects of different landscape char-
acters and biophysical changes induced by anthropogenic 
activities. Thus, the study was to investigate the impact of land 
use/cover changes on the dynamics of land surface temperature 
over the Abaminus watershed, Northwest Ethiopia. The results 
disclosed that the mean LST was increased by 3.67°C in the 
watershed, 2.79°C in the forest cover, 2.4°C in the shrublands, 
2.72°C in the grasslands, and 3.05°C in no vegetation area over 
31 years. Over the study period, the mean LST was increased 
by 11.5°C, 3.22°C, and 2.02°C on account of wetlands loss, 
deforestation, and clearing of shrublands in that order. Besides, 
clearing of grasslands into the barren surface has also contrib-
uted to the increase of LST by 0.45°C. Cultivated land 
encroachment and overgrazing due to weak institutional 
arrangements were the major factors of vegetation clearing, 
resulting in LST increments. Wetland loss was largely caused 
by high drainage for irrigated croplands, sedimentation, and 
weak institutional arrangement. Conversely, the LST was 

decreased by 5.42°C and 3.77°C on the afforested barren sur-
faces and planted shrublands, respectively over 31 years. 
Therefore, it is concluded that enabling institutional arrange-
ment should be employed to control the cutting of live and 
dead vegetation, and encroachment of cultivated lands. 
Moreover, enclosure management and plantation of multipur-
pose species on degraded communal lands shall be scaled-up to 
significantly reduce land surface temperature.
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