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Introduction
Accurate analysis of the trajectory of water flows from rainfall 
to streams is essential for the protection and integrated man-
agement of water resources.1 For this, it is essential to under-
stand the physical phenomena that occur within a basin because 
they represent the relationships found within the system.2 
Hence, hydrological models are an economical and effective 
tool for the development of almost all water resource manage-
ment plans.3

The main reason for choosing the Soil and Water 
Assessment Tool (SWAT) model for this study is attributed 
to its versatility for studies on climate change impacts, sedi-
ment transport, simulation of flows, and effects of extreme 
urbanisation, as well as its flexibility in addressing water 
resource problems as reported by Gassman et  al.4 The 
SWAT model is a continuous, spatially semi-distributed, 
process-based model capable of simulating water balance5 
developed and supported by the Agricultural Research 
Service of the United States Department of Agriculture 
(USDA).6,7

The calibration process will only be regarded successful if 
the observation period is representative of the hydrological 
behaviour of the basin8 this is essential for calculating sensi-
tive parameters that deserve attention but cannot be directly 
measured, thus helping to achieve a reliable prediction and to 
bring about an improvement in performance indices.9 
Therefore, the parameters were optimised and calibrations 

were carried out using the Sequential Uncertainty Fitting 
Ver-2 (SUFI-2) algorithm implemented in the SWAT 
Calibration and Uncertainty Programmes (SWAT-CUP) 
developed for automatically computing sensitive model 
parameters.10 Most SWAT-CUP applications use SUFI-2 
algorithm and flow observations to analyse sensitivity, cali-
bration process, and uncertainty of the model.11 The SUFI-2 
algorithm tries to capture as many optimal simulations as 
possible that are within 95% prediction uncertainty (95PPU). 
The algorithm does not obtain a unique value for the param-
eters but an interval that includes all the uncertainties of the 
processes in the basin.12

There is spatio-temporal variability in the distribution of 
water resources in the Tambo River Basin due to the topog-
raphy and climatic and hydrological factors of the region.13 
Data on the thermo-pluviometric interactions with other 
elements that define the climate have determined that there 
is a water deficit in the lower part and an excess in the head-
water region of the Tambo River Basin14,15 especially in the 
dry months, due to the diversion of water from a part of the 
basin to the Pasto Grande hydraulic system.16 In the head-
water region of the Tambo River Basin, the annual volume of 
water available at 75% persistence is sufficient to meet cur-
rent demand; however, the monthly balance shows that an 
average deficit of 23.65 million cubic metres of water exists 
in the dry season. At the same time, there are 10 other sub-
basins in the middle and upper part of the Tambo River 
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Basin with average annual deficits of less than 1.5 million 
cubic metres of water.17 Further, droughts, for example the 
one in 1983, caused estimated losses of USD 200 million in 
southern Peru18 and had a critical impact on the water distri-
bution of the region, resulting in agricultural production in 
southern Peru to fall by up to 75% in 2016.19,20

Finally, the flooding in the coastal valleys is a problem 
that recurs annually, resulting in material- and economic-
damage.19,20 Since 98.7% of the total available water is used 
for activities within the basin, the implementation of a 
hydrological model is essential for forecasting the amount of 
water available. Considering the scarcity of available infor-
mation, and the location of the basin, it is necessary to carry 
out a hydrological simulation study of the Tambo River 
Basin capable of forecasting surface runoff with a reasonable 
level of precision.

The main objective of this study is to implement the SWAT 
model for the hydrological simulation of current flow in the 
Tambo River Basin through the identification and sensitivity 
analysis of 15 parameters that influence the current generation 
and the regime of basin flow. The optimal qualitative perfor-
mance ratings of the SWAT model are defined through model 
calibration using the SUFI-2 algorithm. The results of this 
study will help understand the hydrological processes, as well as 
provide supporting information for the adaptation, manage-
ment, and planning of the water resources of the Tambo River 
Basin.

Materials and Methods
Study area

The Tambo River Basin is located between latitudes 16º 
00’S and 17º 15’ S, and longitudes 70º 30’W and 72º 00’W 
in the south of Peru at 3900 m above sea level, and includes 
the provinces of Mariscal Nieto, Sánchez Cerro, Islay and 
San Román.

The basin extends over 13 361 km2, and the river – from its 
source to the mouth – is 289 km long; its main tributaries are 
Carurnas, Coralaque, Ichuña, and Paltature. The surface water 
resources of the Tambo River Basin are generated in the upper 
basin, with a total annual volume of 1077 million cubic metres 
and an average annual discharge of 31 457 m3/s.21 The popula-
tion of the Rio Tambo Basin is concentrated in urban and rural 
areas including the Mollendo and Ubinas Districts. The main 
productive activities of its population are agriculture and live-
stock rearing.22

The basin is characterised by variable thermal conditions, 
and three types of climate have been identified based on the 
Köppen criteria: very dry semi-warm climate (desert or sub-
tropical arid) with average annual rainfall of 150 mm and 
average annual temperatures of 18℃ to 19℃, temperate sub-
humid climate (Steppe and low inter-Andean valleys) with 
temperatures exceeding 20℃ and annual precipitation below 
200 mm, and cold or boreal climate (Meso-Andean Valleys) 

characterised by average annual precipitation of 300 mm and 
annual temperatures less than 12℃.21 In the basin, land 
without vegetation predominates, with small snow-capped 
mountains also found in the upper reaches; in the south, the 
Pasto Grande reservoir contributes 7.4 hm3 annually during 
the dry season from September to December.15

The model – SWAT

The free software, the SWAT (2012), is a rainfall-runoff 
model of semi-distributed parameters, capable of simulating 
various physical processes on a continuous time scale 
(annual, monthly, and daily). The main objective of the 
model is to predict the impact of management on water and 
sediments in hydrographic basins, as well as the impact of 
agricultural management practices on water quality (nutri-
ents and pesticides). It provides results with reasonable pre-
cision in large basins with a variety in relief, as well as in 
types and uses of soils. Its high spatial resolution allows it to 
be implemented at both continental and hydrological basin 
scales.5,6 The hydrological component of SWAT allows the 
calculation of elements of the water balance and conse-
quently, the water resources (blue, green water, etc.) even at 
the sub-basin level. The terrestrial phase of the hydrological 
cycle is simulated based on the following water balance equa-
tion (equation [1])

SW SW R Q E w Qt
i

t

day surf a seep gw= + − − − −( )
=
∑0
1

 (1)

where SWt and SW0 are the final and initial soil moisture con-
tents (mm H2O), t is time in days, Rday is the amount precipita-
tion on day i (mm H2O), Qsurf is the amount of surface runoff 
on day i (mm H2O), Ea is the amount evapotranspiration on 
day i (mm H2O), wseep is the amount water seepage from the 
vadose zone into the soil profile on day i (mm H2O), and Qgw 
is the amount of return flow on day i (mm H2O).7

Data used

Topography information (Figure 1A) and the greater land-use 
capacity map (Figure 2) were obtained from the GeoServer of 
the Ministry of the Environment of Peru.23 The soil map 
(Figure 3) was extracted from the website of the Food and 
Agriculture Organisation.24 Input data for the SWAT mete-
orological generator such as maximum and minimum daily 
temperature and daily precipitation for the period 1994 to 
2016 were obtained from Servicio Nacional de Meteorología 
e Hidrología del Peru,25 while the wind speed, solar radiation, 
and relative humidity were simulated by the SWAT Model; 
flow data for the period 1994 to 2016 required for the calibra-
tion (Figure 1B) were obtained from Autoridad Nacional del 
Agua.26 Detailed information on the input variables used is 
given in Table 1.
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SWAT set-up

The SWAT model was set up with the help of the ArcGIS inter-
face version of SWAT (ArcSWAT 2012). Initially, delineation of 
the basin and sub-basins was carried out based on topography to 

generate flow direction, flow accumulation, and stream networks. 
The delineation generated 36 sub-basins (Figure 1C) through 
the selection of outlets and inlet points of the basin. The next 
step was the creation of hydrologic response units (HRUs) based 

Figure 1. (A) Location map of the Tambo River Basin and 30 m DEM, (B) location of meteorological stations in the basin and (C) flow-path and sub-

catchment delineation map. 
Abbreviation: DEM, Digital elevation model.

Figure 2. Land-use map of the Tambo River Basin. Figure 3. Soil map of the Tambo River Basin.
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on differences in the properties of soil, land use, and slope, of 
each section of the sub-basin. However, the number of HRUs 
generated depend on filtration based on the thresholds 
specified.

In this case, 598 HRUs were generated that maintained 
as accurate a spatial variability as was possible with thresh-
old values of 2% for both land use and soil type, and 5% for 
slope, compared to most parameters related to SWAT where 
thresholds values are greater than 5%. Furthermore, this 
research used five slope classes defined as 0% to 5%, 5% to 
10%, 10% to 15%, 15% to 25%, and > 25% (Figure 4), based 
on a study conducted by Niraula et al27 for a semi-arid basin. 
The model was built for the period 1994 to 2016. The Pasto 
Grande reservoir is within the basin in the south-east of 
Peru; a spillway from the Pasto Grande reservoir which dis-
charges water from September to December was considered 
an inlet point for water, from 2001. While preparing the 
input tables, it was ensured that all meteorological data 
(precipitation, relative humidity, temperature, wind speed, 
and solar radiation) were represented in the SWAT model. 

After completing the above-mentioned steps, the model was 
ready to run at the default parameter settings.

Description of SUFI-2 algorithm in SWAT-CUP

Calibration using the SUFI-2 algorithm is performed with 
a series of iterations including numerous simulations, with 
each iteration fed with the results of the previous one. This 
results in achieving an approximate (optimised) simulated 
variable. The results of the iterations are a set of val-
ues   (ranges) assigned to the parameters that describe the 
hydrological processes, physical characteristics, and dynam-
ics of each hydrographic basin. Each new iteration presents 
intervals (ranges) of the parameters recursively closer to 
their real value. This aims to limit the uncertainty in the 
initial ranges of the parameters as measurements of these are 
often not available.28,29 Thus, based on the flow measure-
ments introduced in SUFI-2, each successive iteration pro-
vides greater accuracy in the ranges of the parameters of 
each study area. This procedure is called reverse hydrological 
modelling.12,28,30 To calculate the sensitivities of the response 
parameters with the technique specified by the modeller, an 
objective function must be defined.31 Different methods of 
defining an objective function may lead to different results32; 
different objective functions, for example, the coefficient of 
determination (R2) and the Nash-Sutcliffe simulation effi-
ciency (NSE), which have been defined to reduce the prob-
lem of non-uniqueness in model characterization,33 this is 
because NSE generates parameter values similar to other 
objective functions.34

Sensitivity analysis

Sensitivity analysis is performed to identify the most important 
parameters of the model, and is carried out based on changes to 
the objective function depending on the interactions among 

Table 1. Input variables used for SWAT modelling.

INPUT DATA DESCRIPTION SOURCE

Extreme temperature Minimum and maximum daily Temperature. 
Period: 1994-2016.
19 stations.

The National Service of Meteorology and 
Hydrology of Peru (SENAMHI) https://www.
senamhi.gob.pe/

Precipitation Daily precipitation. Period: 1994-2016.
19 stations.

DEM Digital elevation model (30 m resolution) GeoServidor Ministry of the Environment of 
Peru (MINAM) http://geoservidorperu.minam.
gob.pe/Land use Resolution 30 m

Soil type Resolution 10 km The Food and Agriculture Organisation of the 
United Nations (FAO) http://www.fao.org/

River discharge and point inlet Daily river discharge. Period: 2001-2016. Autoridad Nacional del Agua (ANA)
https://www.ana.gob.pe/

Abbreviations: ANA, Autoridad Nacional del Agua; DEM, Digital elevation model; FAO, Food and Agriculture Organisation of the United Nations; MINAM, GeoServidor 
Ministry of the Environment of Peru; SENAMHI, National Service of Meteorology and Hydrology of Peru; SWAT, Soil and Water Assessment Tool.

Figure 4. Slope map of the Tambo River Basin.
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parameter values. These changes are called relative sensitivities. 
Then, a linear approximation of the model parameters is made 
in agreement with the sensitivity of the objective function. 
Furthermore, the level of significance between the parameters 
is determined based on the t-test and P-value. Lower absolute 
values of the t-test are less sensitive than larger values, while 
the P-values greater than 0.05 are of less importance than val-
ues closer to zero.35

All of these procedures are developed in SWAT-CUP. The 
selection of 15 parameters (CN2, ALPHA_BF, GW_
DELAY, GWQMN, GW_REVAP, REVAPMN, RCHRG_
DP, ESCO, EPCO, SLSUBBSN, OV_N, SOL_BD, CH_K2, 
CH_N2, TRNSRCH) for this study was carried out based on 
the study by Lévesque et al36 which identified 34 parameters 
that are sensitive to flow. New parameters in addition to this 
study were also included based on investigations related to 
semi-arid zones.

Calibration and validation

The calibration process consists of adjusting the  model 
parameter values so the simulated values approach those 
observed. It is important to understand that the hydrological 
model does not know the initial simulation conditions, there-
fore a warm-up period is required.37 The readings from the 
calibrated model explain the uncertainties which are evaluated 
by the P-factor and R-factor, the P-factor being the percent-
age of simulation within the 95% prediction uncertainty 
(95PPU). The R-factor is the average thickness of the 95PPU 
band divided by the standard deviation of the data. The sug-
gested values for the P-factor and R-factor  are ‘ > 0.7’ and 
‘< 1.5’, respectively.12,28,38

In the validation process, the parameter values determined 
during the calibration process were used. The simulation 
should be performed with data used in the calibration pro-
cess39,40 to ensure that if the model demonstrates a satisfac-
tory performance during the validation process, it will 
represent the physical conditions of the basin.41 SWAT cali-
bration and validation was processed with the SUFI-2 algo-
rithm included in the SWAT-CUP.38 A divided sample 
procedure that uses runoff data from the Puente Santa Rosa 
bridge station for the period 1994 to 2001 and 2002 to 2016 
was employed in most calibrations using the SUFI-2 algo-
rithm. Throughout the calibration and validation process, 3 
years (1994-1996) were considered as a warm-up period to 
ensure better performance as the initial conditions of the sys-
tem are unknown to the model. Multiple simulation itera-
tions were executed, with a minimum of 500 simulations in 
every execution.

Model performance evaluation

In this study, the NSE, R2, percent bias (PBIAS), and root 
mean square error (RSR) were the four performance measures 

used to evaluate the performance of the hydrological model. 
These performance measures were recommended by Moriasi 
et al42 who specified the evaluation criteria.

NSE is one of the most commonly used performance crite-
ria in hydrology; it varies from −∞ – 1, exhibiting better values 
in the range 0.5 to 1. NSE determines the relative magnitude 
of the residual variance in comparison with the observed data 
variance, and is calculated using equation (2)

NSE
Q Q

Q Q
i

n
mo ss i

i

n
mo i me

= −
−( )
−( )

=

=

∑
∑

1 1

2

1

2

,

 (2)

where Qme is the mean of observed discharges, Qmo is the 
observed discharge, Qss is the simulated discharge, and n is the 
total number of observations.

The collinearity between the simulated and observed flow 
rates is determined using R2; the values vary from 0 to 1, with 
values greater than 0.5 representing good performance. R2 cal-
culated using equation (3) as follows

R
Q Q Q Q
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∑
∑

, ,
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PBIAS measures the average tendency of the simulated 
data. Abbaspour et  al38 suggests that PBIAS values must 
approach 0 or should be less than 25% for the model to be 
considered a good model. Positive values  indicate underesti-
mation of the model and negative values indicate overesti-
mation of the model.43 It can be calculated as follows 
(equation [4])

PBIAS
Q Q

Q
i

n
mo ss i

i

n
mo i

= ×
−( )

=

=

∑
∑

100 1

1 ,

 (4)

where Qmo is the observed discharge and Qss is the simulated 
discharge.

The standard deviation index represented by RSR is the 
mean squared error index (RMSE) divided by the standard 
deviation of the observed data. It may take values from 0 to 
∞,42 with values less than 0.7 indicating good simulation.44,45 
RSR can be calculated as follows (equation [5])

RSR
Q Q

Q Q

i

n
mo ss i

i

n
mo i me

=
−( )

−( )
=

=

∑
∑

1

2

1

2

,

 (5)

where Qme is the mean of observed discharges, Qmo is the 
observed discharge, Qss is the simulated discharge, and n is the 
total number of observations. The optimal ranges of the param-
eters are provided in Table 2.
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Results and Discussion
Parameter sensitivity analysis

The results of the sensitivity analysis of 15 parameters with 
respect to model output are provided in Table 3, which sum-
marises the parameter sensitivity concerning surface flow, base 
flow, and streamflow, as well as the initial values and best ranges 
of model parameters. The results of the global sensitivity analy-
sis with the t-test indicate the most sensitive parameters 
(P < 0.05).

For the objective function NSE, the fraction of transmission 
losses from the main channel that enters the deep aquifer 
(TRNSRCH, P = 0.00, t = -18.51) was found to be the most 
sensitive parameter followed by effective hydraulic conductiv-
ity of the soil layer (CH_K2, P = 0.00, t = -11.84), groundwater 
delay (days) (GW_DELAY, P = 0.026, t = -2.218), deep aquifer 
percolation fraction (RCHRG_DP, P = 0.03, t = -2.159), and 
Manning’s n value for overland flow (OV_N, P = 0.04, t = 2.024) 
for the calibration process.

For the objective function R2, the fraction of transmis-
sion losses from the main channel that enters the deep 
aquifer (TRNSRCH, P = 0.00, t = -24.48) was identified as 
the most sensitive parameter followed by curve number II 
(CN2, P = 0.00, t = -9.23), deep aquifer percolation fraction 
(RCHRG_DP, P= 0.00, t = -4.52), effective hydraulic con-
ductivity in main channel alluvium (mm/h) (CH_K2, 
P = 0.00, t = -3.94), groundwater delay (days) (GW_
DELAY, P = 0.00, t = -3.43), Manning’s ‘n’ value for the 
channel (CH_N2 P = 0.00, t = 3.26), ground water re-evap-
oration coefficient (GW_REVAP, P = 0.04, t = -2.02), and 
base flow recession constant (ALPHA_BF, P = 0.05, 
t = -1.93), for the calibration process. A dotty plot (Figures 
5 and 6) is the plot of parameters based on the objective 
function that indicates a distribution of the sampling 
points that explain the parameter sensitivity.38 The great-
est number of points of the R2 objective function are in the 
optimal interval (R2 > .5).

In a sensitivity analysis using both objective functions, the 
fraction of transmission losses from the main channel that 

enters the deep aquifer (TRNSRCH) was the most sensitive 
parameter. Sensitivity analysis using R2 does not suggest the 
Manning’s n value for overland flow (OV_N) as a sensitive 
parameter, but introduces four new sensitive parameters (CN2, 
CH_N2, ALPHA_BF, GW_REVAP).

The sensitive parameters are related to the configuration 
of the lateral flow in the root zone, the connection of the 
shallow aquifer to the river bed, and dynamics of groundwa-
ter recharge, pointing to the importance of the relationship 
between the shallow aquifer and the main channel. The sen-
sitive parameters (CN2, ALPHA_BF, RCHRG_ GW and 
CH_K2) observed for semi-arid basins in Turkey, South 
Africa,48 Spain, France, and China are similar to the those 
indicated for R2.

Some sensitive parameters are related to the transport and 
transmission processes in the main channels (TRNSRCH, 
OV_N, CH_N2) due to the unique characteristic of the basin 
that results in greater intensity of precipitation in the headwa-
ters of the basin where there is greater flow, with large amounts 
of water transported several kilometres towards the down-
stream end of the basin. The comparison of the NSE and R2 
objective functions using SUFI-2 indicates that better results 
are obtained using R2.

Calibration and uncertainty analysis

Before calibration, the model was incapable of simulating 
streamflow values, and showed poor index values of R2 = 0.48, 
NSE = -0.98, PBIAS = -162, and RSR = 1.41, necessitating the 
calibration process and automated analysis of flow uncertainty 
to improve the indices.

The sensitive parameters were continuously modified for 
the daily and monthly values for the period 1994 to 2001 
using SUFI-2 algorithm with 500 simulations for each execu-
tion. The measured and predicted results were correlated at 
the same time with the output end, FLOW_OUT_34 (sub-
basin 34).

During the calibration, the P-factor and R-factor 
obtained were 0.98 and 1.18, respectively, for the two 

Table 2. Classification of statistical indices.

NSE PBIAS R² RSR CLASSIFICATION

0.75 < NSE ⩽ 1.00 PBIAS ⩽ ± 10 0.75 < R² ⩽ 1.00 0.00 ⩽ RSR ⩽ 0.50 Very good

0.60 < NSE ⩽ 0.75 ± 10 < PBIAS ⩽ ± 15 0.60 < R² ⩽ 0.75 0.50 ⩽ RSR ⩽ 0.60 Good

0.36 < NSE ⩽ 0.60 ± 15 < PBIAS ⩽ ± 25 0.50 < R² ⩽ 0.60 0.60 ⩽ RSR ⩽ 0.70 Satisfactory

0.00 < NSE ⩽ 0.36 ± 25 < PBIAS ⩽ ± 50 0.25 < R² ⩽ 0.50 RSR > 0.7 Bad

NSE ⩽ 0.00 ± 50 ⩽ PBIAS R² ⩽ 0.25 Inappropriate

Moriasi et al45, Fernandez et al46, Van Liew et al47.
Abbreviations: NSE, Nash-Sutcliffe simulation efficiency; PBIAS, percent bias; RSR, root mean square error.
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Table 3. Sensitivity ranking of SWAT model parameters in the Tambo River basin catchment.

PARAMETER 
NAME

DESCRIPTION INITIAL 
RANGE

OBJECTIVE FUNCTION NSE OBJECTIVE FUNCTION R2

RANk FITTED 
VALUE

t-STAT P-
VALUE

RANk FITTED 
VALUE

t-STAT P-
VALUE

v__
TRNSRCH.
bsn

Fraction of 
transmission losses 
from main channel 
that enters deep 
aquifer

0 to 1 1 0.197 -18.51 0.00 1 0.153 -24.48 0.00

v__CH_
k2.rte

Effective hydraulic 
conductivity in main 
channel alluvium 
(mm/h)

0 to 100 2 45.700 -11.84 0.00 4 66.3 -3.94 0.00

v__GW_
DELAY.gw

Groundwater delay 
(days)

5 to 50 3 5.315 -2.21 0.02 5 10.355 -3.43 0.00

v__RCHRG_
DP.gw

Deep aquifer 
percolation fraction

0.4 to 1 4 0.495 -2.15 0.03 3 0.605 -4.52 0.00

r__OV_N.hru Manning’s n value 
for overland flow

-0.1 to 0.1 5 -0.061 2.02 0.04 13 0.007 0.42 0.67

r__CN2.mgt Curve number II -0.3 to 0.1 6 -0.175 -1.49 0.13 2 -0.042 -9.23 0.00

r__SOL_
BD().sol

Baseline flow 
recession constant 
(days)

-0.2 to 0.2 7 0.138 -1.27 0.20 15 -0.080 -0.31 0.75

v__GW_
REVAP.gw

Ground water 
re-evaporation 
coefficient

0.01 to 0.3 8 0.184 -1.21 0.22 7 0.192 -2.02 0.04

v__CH_
N2.rte

Manning’s ‘n’ value 
for the channel

0 to 1 9 0.677 0.96 0.33 6 0.873 3.26 0.00

v__
REVAPMN.
gw

Threshold depth of 
water in the shallow 
aquifer for re-
evaporation to 
occur (mm)

15 to 60 10 30.075 0.65 0.51 14 51.765 -0.39 0.69

v__ESCO.
bsn

Soil evaporation 
compensation factor

0.5 to 0.9 11 0.716 0.42 0.66 10 0.83 1.26 0.20

v__ALPHA_
BF.gw

Base flow recession 
constant

0.5 to 0.85 12 0.812 0.40 0.68 8 0.733 -1.93 0.05

r__
SLSUBBSN.
hru

Average slope 
length (m)

-0.2 to 0.2 13 -0.160 -0.36 0.71 12 -0.013 -0.49 0.62

v__GWQMN.
gw

Threshold depth of 
water in the shallow 
aquifer required for 
return flow to occur 
(mm)

500 to 1600 14 947.700 0.2569 0.7974 9 782.7 -1.4461 0.1488

v__EPCO.
bsn

Plant uptake 
compensation factor

0.4 to 0.8 15 0.694 0.1728 0.8629 11 0.654 0.7205 0.4716

Abbreviation: SWAT, Soil and Water Assessment Tool.
ar_ refers to a relative change in the parameters where their current values are multiplied by (1 plus a factor in the given range).
bv_ refers to the substitution of a parameter value by another value in the given range.28

Note. The shaded regions in the above table are most important for calibration.

objective functions. The final results were good, as expected, 
and the ratio of P-factor to R-factor was high (greater than 
1 for SUFI-2) for a typical uncertainty analysis, indicating 
acceptable performance of the uncertainty analysis in this 
study.31,49,50

The performance indices have different values in the daily 
and monthly simulations. When NSE is the objective function, 
the values of NSE, R2, PBIAS, and RSR are 0.69, 0.70, 14.7, 
and 0.55, respectively, for calibration of daily time series simu-
lation. The values indicate that the SWAT model could be used 
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with good results for simulations in this area. Table 2 catego-
rises these results as Good. When R2 is the objective function, 
the values of NSE, R2, PBIAS, and RSR are 0.65, 0.65, 5.3, and 

0.59, respectively, for calibration of the daily time series simula-
tion. According to Table 2, these results are Good (NSE, R2, 
and RSR) and Very Good (PBIAS). The hydrograph of daily 

Figure 5. Dotty plots with objective function of NSE coefficient against each aggregate SWAT parameter.
NSE indicates Nash-Sutcliffe simulation efficiency; SWAT, Soil and Water Assessment Tool.

Figure 6. Dotty plots with objective function of R2 coefficient against each aggregate SWAT parameter.
SWAT indicates Soil and Water Assessment Tool.
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simulation using the two objective functions is presented in 
Figure 7.

The calibration of monthly simulation produces better 
values for output than daily simulation. When NSE is the 
objective function, the values of NSE, R2, PBIAS, and RSR 
in the monthly simulation are 0.86, 0.87, 14.4, and 0.38, 
respectively. Table 2 categorises these results as Very Good 
(NSE, R2, and RSR) and Good (PBIAS), indicating that the 
model could describe hydrological processes very well for 
monthly simulations. When R2 is the objective function, the 
values of NSE, R2, PBIAS, and RSR in the monthly simula-
tion are 0.84, 0.85, 4.45, and 0.39, respectively. According to 
Table 2, these results are Very Good, indicating that the 
model could describe hydrological processes very well for 
monthly simulations. However, the model simulated lower 
streamflow in the catchment, particularly during May to 

October, than what was observed. This could be attributed to 
considerable land use changes in this period due to the high 
intensity of precipitation in headwaters of the basin (Figure 
8), and the resulting abundant growth of vegetation is areas 
classified as barren or sparsely vegetated – which begin to 
disappear when the precipitation decreases – changing CN2 
and OV_N. These phenomena are not considered in the 
SWAT model as there is no variation seen in the land-use 
maps. The hydrograph of monthly simulation for the two 
objective functions is presented in Figure 9, and the scatter 
plot of the monthly simulation for the two objective func-
tions is presented in Figure 10. The calibrated parameter 
ranges were later used in validation. The adjusted values  and 
the best final distribution of parameters are represented in 
Table 3.

Model validation

Model validation is performed to check the accuracy of the 
output representation with reference to the actual stream-
flow data. The validation of the model was done by compar-
ing the observed and simulated data. The model validation 
process for both daily and monthly simulations was con-
ducted from 2002 to 2016. Daily flow validation using the 
NSE function resulted in NSE, R2, PBIAS, and RSR values 
of 0.52, 0.67, 5.89, and 0.69, respectively. As can be seen in 
Table 2, these results can be categorised as Satisfactory 
(NSE and RSR), Good (R2) and Very Good (PBIAS). For 
function R2 function the values of NSE, R2, PBIAS, and 
RSR were 0.64, 0.67, -1.31, and 0.60, respectively. As indi-
cated in Table 2, these results can be categorised as Good 
(NSE, R2, and RSR) and Very Good (PBIAS). For daily 
flow simulation, the model performed did not well during 
the validation period compared with during the calibration 

Figure 7. Hydrograph of simulated and observed daily flow using two objective functions for calibration period.
NSE indicates Nash-Sutcliffe simulation efficiency; PBIAS, percent bias; RSR, root mean square error.

Figure 8. Precipitation and water discharge distribution of the Tambo 

River Basin.
NSE indicates Nash-Sutcliffe simulation efficiency; PBIAS, percent bias; RSR, 
root mean square error.
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period when using NSE as the objective function. With R2 
objective function, the values obtained for indices during 
validation are close to the values obtained during calibra-
tion. However, there is improvement in the PBIAS for both 
NSE and R2 objective functions. The hydrograph of daily 
simulation using the two objective functions is presented in 
Figure 11.

The NSE, R2, PBIAS, and RSR values from monthly flow 
validation using NSE as the objective function were 0.70, 
0.87, 5.87, and 0.55, respectively. According to Table 2, the 
results can be categorised as Good (RSR and NSE) and Very 
Good (PBIAS and R2). When R2 is the objective function, 
NSE, R2, PBIAS, and RSR values were less than during cali-
bration, and were 0.85, 0.89, -1.6, and 0.39, respectively. As 
seen in Table 2, the results can be categorised as Very Good. 
For the monthly simulation, the model remained in the same 
category (Good) as in the calibration period when NSE was 
the objective function, while with R2, the indices exhibited 
better values than the values obtained in the calibration pro-
cess. The hydrograph and scatter plot of the monthly simula-
tion using the two objective functions, are presented in 
Figures 12 and 13, respectively.

Conclusion
This study examined the possibility of using the SWAT 
model to accurately predict the daily discharge in a river 
basin. The model was implemented for the Tambo River 
catchment located in southern Peru in South America. 
Model calibration and parameter uncertainty analysis were 
conducted simultaneously using the SUFI-2 algorithm for 
two objective functions, NSE and R2; the algorithm was 
implemented in SWAT-CUP which is a standalone model 
that includes several graphical modules. Monthly simulation 
provides better results than daily simulation. For both daily 
and monthly simulations, higher performance was achieved 
using objective function R2 compared to NSE; SWAT-CUP 
revealed a better value of R2 with a Bad performance rating 
for PBIAS, which means having to choose a lower value of 
R2 for better results.

The objective function R2 found more sensitive parameters 
in the sensitivity analysis compared with NSE. The sensitive 
parameters found by R2 are similar to those found in related 
studies for semi-arid areas. For the sensitivity analysis during 
calibration, both the objective functions R2 and NSE must be 
used to obtain the two sets of parameters that calibrate the 
model to evaluate which of the parameters best represent the 
physical conditions of the basin.

The process of modelling streamflow becomes even more 
difficult in catchments where there is irregular rainfall dis-
tribution. In addition, the lack of continuous high-quality 
data, especially in Peru, is a challenge that hydrologists face 
when modelling streamflow. Land-use and soil types are the 
most important data needed for the definition of HRUs; any 
effort to obtain more accurate data and maps will help 
reduce model uncertainty. The calibration with one hydrol-
ogy station increases model uncertainty as it simplifies 
parameters and phenomena. After considering all uncer-
tainties during the model inputs and parameterisation, the 
SWAT model provided the simulation result Good for daily 

Figure 9. Hydrograph of simulated and observed monthly flow using two objective functions for calibration period.
NSE indicates Nash-Sutcliffe simulation efficiency; PBIAS, percent bias; RSR, root mean square error.

Figure 10. Scatter plot for monthly simulation using two objective 

functions for calibration period.
NSE indicates Nash-Sutcliffe simulation efficiency.
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and Very Good for monthly time series using the objective 
function R2, for the Tambo River Basin (Table 4).

Finally, the generality of the study findings indicates that 
they can help in selecting parameters for calibration processes 
and more applications in other semi-arid areas. The calibrated 
model may be used to guide water management decisions by 
stakeholders who have water provision targets to meet, espe-
cially in allocating water for agriculture more realistically. 
Furthermore, the modelling can be applied in planning for the 
construction of dams in the future, in climate change studies, 
and in flood risk and disaster management, which will contrib-
ute to improved water resources management in the Tambo 
River Basin.

Figure 11. Hydrograph of simulated and observed daily flow using two objective functions for validation period.
NSE indicates Nash-Sutcliffe simulation efficiency; PBIAS, percent bias; RSR, root mean square error.

Figure 12. Hydrograph of simulated and observed monthly flow using two objective functions for validation period.
NSE indicates Nash-Sutcliffe simulation efficiency; PBIAS, percent bias; RSR, root mean square error.

Figure 13. Scatter plot for monthly simulation using two objective 

functions for validation period.
NSE indicates Nash-Sutcliffe simulation efficiency.
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