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Introduction
Numerous studies have shown that there remain only few 
landscapes, peripheral and fairly inaccessible location, on the 
earth that are still in their natural state.1 These changes are 
attributed to the human-caused environmental challenge that 
creates regional combinations of environmental conditions that 
may fall outside the envelope in the near future.2 One of the 
most significant global challenges is related to management of 
the transformation of the earth’s surface that occurs due to 
changes in land use.3 As a result, land use land cover (LULC) 
change studies become an essential part of environmental and 
natural resource management.4

Ethiopia is part of the dynamic land cover change where 
more than 90% of the country’s highlands were once forested, 
and currently the percentage of forest cover is less than 4%.5 
The land cover change in the study area and the country at 
large was an outcome of natural and socioeconomic factors and 
their utilization by man both in time and space.6 Most 

importantly, population growth and agricultural and urban 
expansion are the major drivers of land cover change in the 
country.7

Understanding the spatiotemporal land cover status of an 
area is an important procedure to implement future conserva-
tion measures. This requires an in-depth analysis of time series 
fine-scale satellite images8,9 as a vital tool to trace the trend and 
nature of land cover change.10 As a result, 5 multi-temporal 
Landsat Thematic Mapper (TM) images were used to distin-
guish the different land cover types and classify large geo-
graphic areas employing change detection analysis.11–13 The 
main objective of the change detection process based on digital 
images is to mathematicize the LULC change for different 
features of interest for varying time resolutions.14 The tech-
niques for change detection analysis included post-classifica-
tion comparison (PCC), image ratio, and manual on-screen 
digitization of change, principal components analysis, image 
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regression, conventional image differentiation, and multi-date 
image classification.15

Supervised classifications require a priori knowledge of the 
scene area and regions containing a material of interest, train-
ing sites, and are delineated and stored for use in the supervised 
classification algorithm. The maximum likelihood (ML)-
supervised classification techniques works with the assumption 
of assignment of each pixel to the LULC class for which they 
have the highest membership probability. The accuracy of pixel 
probabilistic classification can be further softened using poste-
rior membership probability values.16 Pixel probabilities are 
equal for all classes, and the input data in each band follow the 
Gaussian normal distribution function.17 Although the ML 
method uses well-developed probability theory, the classifica-
tion basic assumption has some drawbacks if the histogram of 
the image fails to follow the normal distribution curve. In addi-
tion, insufficient ground truth data would lead to erroneous 
estimation of the mean vector and the variance-covariance 
matrix, which results in poor image classification.18 One of the 
particular problem in digital image processing and accurate 
land cover classification is the mountain topography shadow-
ing effect which was improved using ancillary data, such as a 
digital elevation model and geomorphometric variables (relief, 
convexity, slope, aspects, and incidence).7

Land cover alterations are caused by poor management of 
land resources which lead to severe environmental problems. 
To understand situations of unrecorded land use change, inter-
pretation of data from earth-sensing satellites has become vital. 
The LULC changes can be monitored at different spatiotem-
poral scales using geographic information system (GIS) and 
remote sensing (RS)19,20 tools that provide scientific procedures 
to analyse the pattern, rate, and trend of environmental change 
at all scales.21 Satellite images are the most common data 
source for change detection, quantification, and mapping of 
land cover patterns due to its repetitive data acquisition and 
availability of accurate geo-referencing procedures.22

The spatiotemporal density and extent of land cover vary 
with agro-climatic zones, slope, and soil type. In the past, land 
use changes were marginal in the study area where land use 
planning was least imperative,23 whereas in recent times, pro-
gressive land degradation and unplanned utilization of land 
resources is seriously aggravating the incidence of poverty and 
food insecurity. This proves the importance of time series anal-
ysis of land cover change pattern in the area characterized by 2 
dominant physiographic units: highland escarpments and high 
plateaus.

Land use land cover study is essential in describing the way 
the land is currently used and provides a starting point for pre-
sent and future planning. To this end, acquiring reliable and 
updated spatiotemporal information on land cover change 
requires formulating systematic methods, tools, and tech-
niques.24 The main objective of this study was to assess the 
long-term spatiotemporal land cover change patterns, and the 
specific objectives of the research were to quantify the rate, 
trend, and magnitude of change with topography for the selec-
tion, planning, and implementation of development strategies. 
To achieve these objectives, we used rich archive and spectral 
resolution Landsat data sets, the Bayesian ML-supervised clas-
sifier to map the land use class, and change detection compari-
son techniques to identify intra-image land cover change.25

Materials and Methods
Area description

The study area is located on the eastern border of Amhara 
Regional State, east of the capital Addis Ababa, following the 
water-dividing ridge containing Awash and Afar-Danakil 
basins. The area (18 772.78 km2) with an eastern orientation is 
geographically located between 8.5° and 12.5° north (Figure 1) 
and 39° and 40.5° east. The elevation of the area ranges from 
580 to 3960 m (above mean sea level). Numerous rivers origi-
nated from western highlands flow towards the eastern low-
lands of Denakil plain and Awash River basins. The area 
contains a number of discrete catchments and sub-catchments 
that carry run-off from uplands draining the region’s periphery 
into 4 major river basins: Abbay, Tekezé, Awash, and Afar-
Danakil basins.

The climate of the region is largely controlled by distinct 
dry and wet seasons with unimodal rainfall distribution and 
pronounced wetter and drier cycles that vary considerably from 
year to year. The rainy season extends from June to September 
receiving nearly 70% to 90% of the annual rainfall.26,27 The 
mean annual rainfall ranges from 476 to 1930 mm. The mean 
annual temperature varies from place to place classifying the 
area into 4 traditional, agroecological zones, Wurch (<14°C), 
Dega (14°C-18°C), Weyna Dega (18°C-20°C), and Kolla 
(18°C-24°C), that account nearly 1%, 16%, 46%, and 37% of 
the area, respectively.28,29

The most common classification specific to agriculture 
(Figure S1, left) uses agro-climatic zones which applies the 

Figure 1.  Location map of the study area: terrain slope, geographical 

setting of major river basins, and third-order and second-order network of 

streams.
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water balance concept and the length of the growing season 
including the onset dates at certain probability levels.30 The 
water balance concept classifies the region into 3 distinct zones, 
namely, areas without a significant growing period (N), areas 
with a single growing period (S), and areas with a double grow-
ing period (D). However, the classification based on agroeco-
logical zonation, the spatial classification of the landscape into 
area units with similar agricultural and ecological characteris-
tics, is shown in the agroecological belt model (Figure S1, 
right) as extrapolated from agro-climatic regions.31 In general, 
climate study and classification is rather complex that has been 
the topic of many studies.32

Materials

Selection of the most appropriate RS image considers different 
factors such as complexity of the area, coverage, and level of 
spatial detail required for the specific objective. Remote sens-
ing–based change detection analysis uses time series multi-date 
(multi-sensor) images to evaluate land cover change under nat-
ural and human alterations.23 In this research, 5 multi-temporal 
cloud-free Landsat TM images (path 168 and rows 52-54) cov-
ering the period 1995 to 2014 were used. The data captured on 
February were provided by the National Aeronautics and Space 
Administration (NASA)/US Geological Survey (USGS).

To analyse the trend and magnitude of land use change, we 
used time series 30-m resolution TM Landsat images and 
1:50 000-scale topographic maps acquired from the Ethiopian 
Mapping Agency to georeference the satellite image and extract 
essential features related to the area. A 30-m resolution 
Advanced Spaceborne Thermal Emission and Reflection 
Radiometer (ASTER) Global Digital Elevation Model 
(GDEM) was used as a principal material to generate contour, 
slope maps, and as auxiliary data to support the accuracy of 
image classification. The GDEM was acquired from the Earth 
Remote Sensing Data Analysis Center (ERSDAC) of Japan 
and NASA’s Land Processes Distributed Active Archive Center 
(LPDAAC).33 To process the resulting data, we have used the 
Earth Resources Data Analysis System (ERDAS IMAGINE 
2013), ArcGIS10.3, and Environment for Visualizing Images 
(ENVI 4.7). Quantitative analysis of spatial and historical land 
cover changes was analysed by subtraction of images of the 
same location using GIS and RS tools that provide a flexible 
environment for collecting, storing, displaying, and analysing 
digital data necessary for change detection.34 The effect of 
topography on each of the data types and classification methods 
in terms of geometric properties and thematic accuracy was 
improved using auxiliary terrain data sets.

Methodology

The methodology and procedure employed in the LULC study 
included interpretation and analysis of recent and middle-aged 
satellite images, normalized difference vegetation index (NDVI) 

and NDVI differencing (DNDVI) analysis, preliminary land 
use and land cover classification and mapping, field and signa-
ture data collection and verification, and post land cover map-
ping (Figure 2). During pre-fieldwork, the images were rectified 
and enhanced to create a more realistic representation of the 
scene and land cover signatures. Geospatial data uncertainty 
resulted from image resampling, percent cloud cover, assump-
tions of homogeneity, and physical properties of feature of 
interest were improved by applying geometric and radiometric 
corrections.35,36 Nearest neighbour resampling method was 
employed and colour balance or contrast stretching was used for 
image enhancement through histogram equalization.37

Image pre-processing.  Image processing involves manipulation 
and interpretation of digital images. The spatial resolution of 
images was enhanced using resolution merge technique that 
integrates images of different spatial resolution or pixels. Radi-
ometric enhancement, however, improved the area image clas-
sification by addressing stripping and banding errors that occur 
when the detector goes out of adjustment.7,38 In addition, prin-
cipal component analysis improved the image visualization 
with a technique of data compression to produce uncorrelated 
output bands, segregate noise components, and reduce the 
dimensionality of data sets.39

During image pre-processing, TM digital images of varying 
resolution were resampled for spatiospectral resolution, layer 
stacked for the different scenes, and geometrically transformed. 
Geometric transformation of digital images modifies the spa-
tial relationship between pixels in an image for post-processing. 
Image resampling involves the conversion of satellite imagery 
at a relatively fine scale to a more coarse spatial resolution with 
imagery from similar or different satellite sensors with varying 
spatial resolution. The choice of the resampling method 
depends, among others, on the ratio between input and output 
pixel sizes and the purpose of the resampled image.40 In this 
research, Landsat TM images were resampled using the nearest 
neighbour resampling technique to preserve the original image 
radiometric information.41 In addition, nearest neighbour 
assigns the digital number, value of the closest original pixel to 
the new pixel by retaining all spectral information for efficient 
image classification.40,42

Classif ication and land cover mapping

Various classification methods have been developed to extract 
essential information from imageries. The 2 main types used in 
this research were the pixel and object-based classification 
techniques. Pixel-based methods can be cluster-based unsu-
pervised or supervised classification,43 whereas the later uses 
statistical (eg, ML) and non-statistical (eg, support vector 
machines) algorithms.44 The object-based classification which 
overcomes some of the particular problems encountered with 
pixel-based classification45 was used to analyse all the spati-
otemporal TM data sets.
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Image data were first classified by aggregating images into 
natural groupings or clusters present in the scene based on their 
inherent spectral properties. The false colour composite unsu-
pervised land cover classification maps (Figure 3) were pre-
pared using the ISODATA (Iterative Self-Organizing Data 
Analysis) clustering algorithm.46 During RS image classifica-
tion and interpretations, field and local area knowledge of land 
cover types and patterns were used as training site development 
for the supervised classification. Following the supervised 
image classification, change detection analysis was made to 
quantify the rate, magnitude, and pattern of land cover 
change.47 The most common satellite image classification algo-
rithms applied in this study is the ML classifier that touches a 
probability density function and guesses the probability with 
which a specific pixel belongs to a specific class. Larger devia-
tions from the centre point will be allowed where a pixel is not 
in the area of a contesting category.39 The ML-supervised clas-
sification techniques work with Bayes theorem and uses a dis-
criminant function to assign the pixel to the class with the 
highest probability.48 Each image pixel belongs to the land 

cover class for which they have the highest membership likeli-
hood following the Gaussian normal distribution function.18 
Although the ML classifier is slow in computation and some-
times unsafe in assuming Gaussian-distributed input data 
classes, yet, it is a more accurate statistical decision criterion in 
classifying overlapping signatures. The ML-supervised classi-
fication derived from the Bayes theorem is given as follows:

	 P i
P i P i

P
|

|
ω

ω

ω
( ) = ( ) ( )

( )
	 (1)

where P i( | )ω  is the likelihood function, a posteriori distribu-
tion, ie, the probability that a pixel with feature vector ω belongs 
to class I; P(i) is the priori information, ie, the probability that 
class i occurs in the study area and P(ω) is the probability that 
ω is observed. P(ω) can be written as follows:

	 P P i P i
i

m

ω ω( ) = ( ) ( )
=
∑ |

1

	 (2)

Figure 2.  A flow diagram for LULC mapping and change detection analysis modified from Ayele et al.7
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where M is the number of classes. P( )ω  is a normalization 
constant to ensure that P i( )ω  sums to l. Any pixel x is 
assigned to class i by the following rule:

	 x i if P i P j for all j i∈ ( ) > ( ) ≠| |ω ω 	 (3)

Maximum likelihood often assumes that the distribution of 
the data within a given class i obeys a multivariate Gaussian 
distribution. The discriminant or monotonic log-likelihood 
function48,49; function is then define as follows:

	
g p i C

N C
i i

i
i i

i

( )( ) ln ( ) / ( ) ( )
/ ln( ) / ln(| |

ω ω ω µ ω µ= = − − −
− −

−1 2
2 2 1 2

1

Π ))
	 (4)

Each pixel is assigned to the class with the highest likeli-
hood or labelled as unclassified if the probability values are all 
below a user-defined threshold.18

Post-classif ication change detection.  Following image pre-pro-
cessing, image post-processing and LULC classification were 
defined according to the classification schemes in Food and 

Figure 3.  Comparative 10-class ISODATA unsupervised classification map for Landsat images: (A) 2005 and (B) 2009.

Agriculture Organization (FAO) guides50 where land use and 
land cover of the area were mapped using vegetation cover, 
type, and intensity of cultivation. The topographic map of the 
study area printed at 1:50 000 scales was used as an important 
resource to georeference the image and extract essential fea-
tures related to each land use and land cover unit.

Results and Discussion
The LULC maps produced from object-based classifications 
were assessed for their accuracy. For the object-based classifi-
cation that uses the ML classifier, we used more than 283 
random, well-distributed field samples for training site devel-
opment. To make image reinterpretation and analysis reliable 
and relatively homogeneous, representative attribute data and 
land cover signatures were collected using the ISODATA 
false colour unsupervised classification map as a field guide 
(Figure 3). Image post-classification error matrix was com-
puted as the total number of correct class predictions divided 
by total number of cells,51 and the accuracy of classification 
was assessed using contingency table (confusion or error 
matrix) produced from a random sample of individual pixels 
or clusters compared with known cover conditions over the 
same pixel areas.52
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LULC classif ication

Remote sensing images were analysed using object-based 
supervised ML classification algorism that uses the means and 
variances of the training data to estimate the probability that a 
pixel is a member of a class. In ML, the pixel which is placed in 
the class has the highest probability of membership.53 A clas-
sification scheme was developed for further analysis of the 
images, based on the characteristics and land cover types of the 
area (Table 2).

The final Bayesian ML classification resulted in 12 major 
land cover units and 43 subunits with automatic merging of 
closer values of reflectance properties and characteristics (Table 
S1). The ML-supervised classification of the 2014 Landsat TM 
image revealed that most of the area was covered by cultivated, 
wood, bush, shrub, grass, and forest land mapping units account-
ing 62.8%, 12.4%, 8.4%, 6.1%, 4.1%, and 2.4% of the total, 
respectively. However, exposed surface, built-up area, afro-
alpine vegetation, riparian vegetation, water body, and marsh 
areas covered only small portion of the land area (Figure 4). 
Details of land use unit areas and subunits for the 2014 image 
analysis can be found in the supplementary table (Table S1).

Trend of LULC change.  The trend and magnitude of land 
cover change were analysed for a period of 5 and 10 years from 
the benchmark year, 1995. The bidecadal trend of land cover 
change revealed that there was a major increase in the culti-
vated land that can be represented by an exponential growth 
model (Table 1, Figure S2). Cultivated land was expanding at 
the expense of the remaining land units as explained in the 
tabular trend models. The degree of expansion was shown 
with 93% strong positive correlation coefficient, where Y is the 
forecast and t is a variable time value. In this study, the general 
trend of built-up areas has shown an increasing trend due to 

population expansion and its demand for infrastructure devel-
opment. The result of bidecadal trend analysis revealed that 
built-up areas covered 0.47%, 0.49%, 0.56%, 0.52%, and 0.83% 
of the total area for increasing order of the analysis years 
(Table 2). The highest share of built-up areas is found near the 
urban cities and homesteads.

On the contrary, the trend of 5 years–based LULC change 
detection analysis for exposed surfaces, grassland, afro-alpine 
vegetation, and water body was less predicted with exponen-
tial models. As a result, we used polynomial model approxi-
mations as explained by the statistical significance test, R2 
values. The statistical efficiency criterion, R2 values more than 
0.7, showed reasonably good agreement between the depend-
ent and the independent variables and a value above 0.6 is 
also acceptable.

LULC change detection.  Change detection involves the use of 
multispectral data sets to discriminate area of land cover change 
between dates of imaging. Change detection procedures 
included analysis of sensor data, spatial resolution, viewing 
geometry, spectral bands, radiometric resolution, and the time 
of day. Following image pre-processing, multi-temporal TM 
images were post-processed to quantify the area of change and 
change rate, the spatial distribution of change types, change 
trajectories, and accuracy assessment of change detection 
results.

Two change detection techniques, pre- and post-classifica-
tion were used for the length of the records. The former method 
analyses the change using the NDVI54 and the latter and the 
most widely used change detection method uses the ML clas-
sification algorism. Post-classification evaluates the change in 
LULC based on a detail-categorized classification of land 
cover units.

Figure 4.  Trend and magnitude of land cover change for the past 20 years: a call-out map for the 2014 land cover distribution.
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Pre-classif ication change detection.  The NDVI is a function of 2 
bands: the red and near-infrared spectral band.55 The NDVI is 

calculated on a per-pixel basis as the normalized difference 
between near-infrared and red bands given as follows:

Table 2.  Land cover distribution in hectares and percent coverage of 12 major land cover units from 1995 to 2014.

Area, hectares and % coverage

Land 
cover

1995 % cover 2000 % 
cover

2005 % 
cover

2009 % 
cover

2014 % 
cover

Built-up 8898 0.47 9244 0.49 10 463 0.56 9698 0.52 15 664 0.83

Bushland 233 507 12.44 249 645 13.30 151 850 8.09 130 357 6.94 157 186 8.37

Cultivated 
land

876 176 46.67 864 102 46.03 969 049 51.62 1 076 798 57.36 1 178 098 62.76

Woodland 324 022 17.26 327 680 17.46 359 627 19.16 257 436 13.71 232 694 12.40

Exposed 
surface

58 561 3.12 23 591 1.26 40 950 2.18 71 727 3.82 36 666 1.95

Forest land 51 430 2.74 37 212 1.98 19 182 1.02 39 711 2.12 43 258 2.30

Grassland 92 882 4.95 126 543 6.74 102 581 5.46 106 900 5.69 77 500 4.13

Marshland 8759 0.47 5195 0.28 4636 0.25 7065 0.38 2456 0.13

Riparian 
vegetation

31 477 1.68 26 898 1.43 25 661 1.37 23 968 1.28 6962 0.37

Shrubland 172 439 9.19 189 110 10.07 152 690 8.13 130 356 6.94 114 788 6.11

Afro-alpine 
vegetation

14 641 0.78 13 949 0.74 35 515 1.89 18 260 0.97 7756 0.41

Water body 4486 0.24 4109 0.22 5074 0.27 5002 0.27 4250 0.23

Total 1 877 278 100 1 877 278 100 1 877 278 100 1 877 278 100 1 877 278 100

Table 1.  Best fit models to analyse the trend of land use land cover change dynamics.

Land use unit Best fit model equation Statistical efficiency, R2 (%) Trend model

Built-up Y = 0.4e0.1197t 69 Exponential growth

Bushland Y = 14.7e−0.144t 64 Exponential decay

Cultivated land Y = 41.2e0.0812t 93 Exponential growth

Woodland Y = 20.7e−0.09t 61 Exponential decay

Exposed surface Y = −0.52t3 + 4.8t2 − 12.6t + 11.6 98 Third-order polynomial

Forest cover Y = −0.06t3 + 0.82t2 − 3.2t + 5.2 76 Third-order polynomial

Grassland Y = −0.37t2 + 1.96t + 3.6 72 Second-order polynomial

Marshland Y = 0.55e−0.227t 53 Exponential decay

Riparian vegetation Y = 2.8e−0.314t 65 Exponential decay

Shrubland Y = 11.4e−0.119t 86 Exponential decay

Afro-alpine 
vegetation

Y = −0.07t3 + 0.4t2 − 0.35t + 0.72 63 Third-order polynomial

Water body Y = −0.01t3 + 0.1t2 − 0.18t + 0.5 89 Third-order polynomial

Y is the percent coverage of land cover unit after time t (years).
These results are based on 5 multi-temporal cloud-free Landsat Thematic Mapper images to represent the trend of land cover change for the past 2 decades. However, 
the fit equation and the corresponding trend may vary with image spatiotemporal resolution, required level of spatial detailing, human activity, and unpredicted climate 
change.
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	 NDVI NIR RED
NIR RED

=
−
+

	 (5)

where NIR and RED are the near-infrared and red band val-
ues, respectively, for the cell. The classification maps for the 
years 2005 and 2009 are shown in Figure 5 (bottom).

Landsat TM data of all dates were independently classified 
based on the NDVI value that ranges from −1 to +1. The NDVI 
values were further modified by employing histogram equaliza-
tion enhancement which results in equal probability range of 0 
to 255 for both images. Water bodies which reflect more in the 
visible band than in the near-infrared band appear to have neg-
ative NDVI values, whereas bare soil and rocks have NDVI 
value of around 0. Negative NDVI values mapped darker indi-
cated features that reflect more in the visible band than in the 
near-infrared band. This in turn indicated areas of low vegeta-
tion density, typical water, cloud, bare soil, and rock.18

Healthy green vegetation, however, has stronger near-infra-
red reflectance thereby providing NDVI values close to +1.56 

From the result, NDVI value ranging from 0.2 to 1 can repre-
sent the vegetation density from sparse to dense vegetation 
canopy. The grey-scale NDVI map (Figure 5, top) is presented 
for visual simplicity and to spatially cross-reference the distri-
bution and extent of different land cover units.

NDVI differencing.  The vegetation indices differencing, 
DNDVI, approach was used to measure the change in biomass 
between initial and final state NDVI images. This method 
statisticizes and compares NDVI values between images 
acquired on 2 different dates. Prior to applying NDVI image 
differencing, the individual NDVI images of each date were 
generated with a range of values from −1 for water to +1 for 
dense vegetation canopy. The DNDVI is then created through 
the subtraction of 2 different time period NDVI images. Equa-
tion 6 shows the DNDVI between 2005 and 2009. In this case, 
2009 is the final state image and 2005 is the initial image:

	 DNDVI NDVI NDVI= ( ) − ( )2009 2000 	 (6)
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Ayele et al	 9

Following the pre-NDVI processing and image enhance-
ment, the bidecadal changes in the land/vegetation cover can 
be inferred. In the DNDVI image (Figure 6B), land cover units 
that have experienced changes are assigned with red and blue 
colours. The gain in vegetation during the bidecadal analysis is 
represented by the flame red colour. Similarly, dark blue areas 
represent land covers that have lost vegetation. The grey-scale 
DNDVI map is presented for visual simplicity and spatial cross 
reference. The major increase in NDVI values between 2005 
and 2009 is in the agricultural areas at the expense of bush, 
shrub, and woodland units (Figure 7, Table 3). The overall 
trend of the vegetation cover change can also be found under 
post-classification change detection.

Post-classif ication change detection.  For a detailed analysis of the 
spatiotemporal change dynamics, we employed an object-based 
supervised classification technique that uses the Bayesian ML 
algorithm. Ground truth data obtained from aerial images and 

training sites were used in the ML classification. Post-classifi-
cation comparison approach was used to analyse the LULC 
change between initial and final state images.

The trend and rate of major land cover changes were ana-
lysed using time series Landsat TM digital images from 1995 
to 2014 (Figure 7). To quantify the trend, rate, and magnitude 
of change between 2 images, we used a time interval of 5 and 
10 years from the benchmark, 1995. As shown in the tabular 
detail, the dominant land use types in the area were agricultural 
and woodland units, which covered nearly 63.9%, 63.5%, 
70.8%, 71.1%, and 75.2% of the entire area for the years 1995, 
2000, 2005, 2009, and 2014, respectively (Table 3). Land cover 
change with agro-climatic zones, soil types, and slope classes 
was common in most part of the area, and the conversion of 
grazing land into plantation trees and closure area develop-
ment were major changes in the past 20 years. The significant 
factors for land cover changes during these periods were attrib-
uted to population growth and its demand for additional 

Figure 5.  NDVI maps for (A) 2005 (left) and (B) 2009 (right): grey-scale representation (top). Colour representation (bottom) of bidecadal NDVI values for 

(A) 2005 and (B) 2009.
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Figure 6.  DNDVI-based land cover change detection for the year (A) 2005 and (B) 2009.

Figure 7.  Trend, rate, and magnitude of land cover change for the major land cover units.
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cultivable land, land degradation on steep and hilltop slopes, 
poor land management, rising demand for cash crops, partial 
implementation of policy strategies, and loose land and 
resources administration.

The post-classification matrix (Table 3) shows the indi-
vidual class percentage and change statistics for 5 cloud-free 
multi-temporal Landsat TM images. The percent land cover 
distribution, percent change in the areal extent of each land 

Table 3.  Post-classification change detection matrix for the past 20 years from 5 cloud-free Landsat Thematic Mapper images, 1995 to 2014.

Land 
cover 
unit

% area cover Change % area cover Change % area cover Change

1995 2000 % Speed,% 2000 2005 % Speed,% 2005 2009 % Speed, %

Built-up 0.47 0.49 0.02 0.004 0.49 0.56 0.06 0.013 0.56 0.52 −0.04 −0.008

Bushland 12.44 13.3 0.86 0.172 13.3 8.09 −5.21 −1.042 8.09 6.94 −1.14 −0.229

Cultivated 
land

46.67 46.03 −0.64 −0.129 46.03 51.62 5.59 1.118 51.62 57.36 5.74 1.148

Woodland 17.26 17.5 0.19 0.039 17.46 19.16 1.7 0.34 19.16 13.7 −5.44 −−1.089

Exposed 
surface

3.12 1.26 −1.86 −0.373 1.26 2.18 0.92 0.185 2.18 3.82 1.64 0.328

Forest land 2.74 1.98 −0.76 −0.151 1.98 1.02 −0.96 −0.192 1.02 2.12 1.09 0.219

Grassland 4.95 6.74 1.79 0.359 6.74 5.46 −1.28 −0.255 5.46 5.69 0.23 0.046

Marshland 0.47 0.28 −0.19 −0.038 0.28 0.25 −0.03 −0.006 0.25 0.38 0.13 0.026

Riparian 
vegetation

1.68 1.43 −0.24 −0.049 1.43 1.37 −0.07 v0.013 1.37 1.28 −0.09 −0.018

Shrubland 9.19 10.1 0.89 0.178 10.07 8.13 −1.94 −0.388 8.13 6.94 −1.19 −0.238

Afro-alpine 
vegetation

0.78 0.74 −0.04 −0.007 0.74 1.89 1.15 0.23 1.89 0.97 v0.92 −0.184

Water body 0.24 0.22 −0.02 −0.004 0.22 0.27 0.05 0.01 0.27 0.27 0 −0.001

Total 100 100 0.0 0.0 100 100 0.0 0.0 100 100 0.0 0.0

Land 
cover 
unit

% area cover Change % area cover Change % area cover Change

2009 2014 % Speed, % 1995 2005 % Speed, % 2005 2014 % Speed, %

Built-up 0.52 0.83 0.32 0.064 0.47 0.56 0.08 0.008 0.56 0.83 0.28 0.028

Bushland 6.94 8.37 1.43 0.286 12.44 8.09 −4.35 −0.435 8.09 8.37 0.28 0.028

Cultivated 
land

57.36 62.8 5.4 1.079 46.67 51.6 4.95 0.495 51.62 62.8 11.14 1.114

Woodland 13.71 12.4 −1.32 −0.264 17.26 19.2 1.9 0.19 19.16 12.4 −6.76 −0.676

Exposed 
surface

3.82 1.95 −1.87 −0.374 3.12 2.18 −0.94 −0.094 2.18 1.95 −0.23 −0.023

Forest land 2.12 2.3 0.19 0.038 2.74 1.02 −1.72 −0.172 1.02 2.3 1.28 0.128

Grassland 5.69 4.13 −1.57 −0.313 4.95 5.46 0.52 0.052 5.46 4.13 −1.34 −0.134

Marshland 0.38 0.13 −0.25 −0.049 0.47 0.25 −0.22 −0.022 0.25 0.13 −0.12 −0.012

Riparian 
vegetation

1.28 0.37 −0.91 −0.181 1.68 1.37 −0.31 −0.031 1.37 0.37 −1 −0.1

Shrubland 6.94 6.11 −0.83 −0.166 9.19 8.13 −1.05 −0.105 8.13 6.11 −2.02 −0.202

Afro-alpine 
vegetation

0.97 0.41 −0.56 −0.112 0.78 1.89 1.11 0.111 1.89 0.41 −1.48 −0.148

Water body 0.27 0.23 −0.04 −0.008 0.24 0.27 0.03 0.003 0.27 0.23 −0.04 −0.004

Total 100 100 0.0 0.0 100 100 0.0 0.0 100 100 0.0 0.0
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cover unit between initial and final state images, and rate of 
change expressed as the slope of the line, and the time rate 
of change of final and initial state images are clearly pre-
sented in the table. In addition, the total land use unit areas, 
percentage coverage, and corresponding area ratio are indi-
cated in Table 2. The tabular figure is self-explanatory to 
analyse the change statistics for the 12 major land cover 
units considered.

From Table 3, it can be observed that the cultivated land 
unit is continuously increasing with a significantly higher posi-
tive slope at the expense of the other land use units (Figure 7). 
The largest increase was shown between 2005 and 2009 that 
covered above 107 750 hectares (5.74%) of the total study area. 
However, there was a slight decrease in cultivated land, decay 
slope of 0.13, between the years 1995 and 2000. This was 
mainly due to the significant increase in some major land cover 
units, such as bush, shrub, and woodland. Built-up areas showed 
a steady increase excepting the year 2009, where the spatial 
extent has reduced by 765 hectares from the previous.

Between the years 2005 and 2009, there was a drastic 
decrease in the woodland unit amounting 102 191 hectares of 
land. This was the maximum exhaustion covering nearly 5.5% 
of the entire area (Figure 7). The next highest change was 
observed between the years 2000 and 2005 for the bushland 
unit. According to the statistics, the bushland showed a sudden 
decrease covering 97 795 hectares, 5.2% of the area. There were 
also moderate decreased in shrubland units between 2000 and 
2005 that covered 36 420 hectares (1.94%) of the entire area. 
The remaining land cover units showed a general decrease 
(riparian vegetation) and some showed a fluctuating trend (eg, 
exposed surface, forest, and marshland units). The riparian veg-
etation has shown a steady decrease throughout the analysis 
period except for the year 2014, where there was a maximum 
decline from the previous percent coverage.

The area of water bodies remained nearly constant with a 
changing slope significantly less than ±0.01%. The only highest 
outliers were observed between 2005 (0.27%) and 2009 (0.27%), 
change slope of 0%, which covered 506 865 hectares of the total 
area. Similarly, in 2005, there was a substantial increase in the 
afro-alpine vegetation covering nearly 2% of the entire area. 
The forest coverage that showed a rapid decline (1%) between 
2000 and 2005 later showed a drastic increase (1.1%) between 
2005 and 2009. The area remained nearly constant for the year 
2014. Comparing the change statistics from 2000 to 2005 and 
2005 to 2009, it can be seen that the rate of change of forest 
coverage was about −0.2% and 0.22%, respectively (Table 3). 
Results revealed that there was a general increase for cultivated 
and built-up areas and a decrease for riparian vegetation.

Image differencing for LULC change detection.  Image differenc-
ing is among the numerous methods that have been developed 
and used for LULC change detection.57 Image difference, the 
difference in the total number of equivalently classed pixels 
between 2 images, is computed by subtracting the initial state 
class totals from the final state class totals. The image difference 
change detection statistics between 1995 and 2014 (Figure 8) 
details the magnitude of land cover charge for the past 2 dec-
ades. A positive value of image difference indicates an increase 
in class size and a decrease in class size is represented by a nega-
tive value. Cultivated land (+301 922 hectares) and built-up 
(6766 hectares) showed an increase in the spatial neighbour-
hood. The remaining 10 land use units, namely, bush (−76 321), 
wood (−91 328), exposed surface (−21 895), forest (−8172), grass 
(−15 382), marsh (−6303), riparian vegetation (−24 515), shrub 
(−57 651), afro-alpine vegetation (−6885), and water body 
(−236), were contributing to the cultivated and built-up areas. 
In other words, in the year 2014, the areal extent of cultivated 
and built-up areas was increased by 301 922 and 6766 hectares, 

Figure 8.  Land use land cover change between 1995 and 2014.
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respectively, at the expense of the other land use units labelled 
by negative values.

In general, the area undergoes a radical change in its form 
from 1995 to 2014, 2 decades. Both pre- and post-classification 
change detection approaches were used to assess the change, 
and Landsat TM satellite images were used for detail analysis 
from USGS satellite data archive. Figures 9 to 11 compare 5 
land cover maps for the years 1995, 2000, 2005, 2009, and 2014. 
The colour figures are self-explanatory to analyse the time 
response of each land cover unit. The post-classification change 
detection analysis (Table 3) is the numeric representation of 

these land cover maps. We used the ML classifier to create the 
signature class of significant land cover category and PCC anal-
ysis to assess the change dynamics. Image differencing and sta-
tistical change detection techniques were used to quantify the 
spatial coverage of the different land use units for the year 2014 
(Figure 8).

Land use change with slope gradient

Continuously increasing demand of land for agriculture over 
decades had brought about changes in the land cover and 

Figure 9.  Land cover map: (A) 1995 and (B) 2000.
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deforestation of higher slope areas. Cultivated land cover in the 
study area expanded substantially to the higher slopes when-
ever agriculture was possible. Table 4 shows the spatial distri-
bution of land cover with terrain slope. The highest percentage 
of land coverage, 674 826 hectares (35.9%) of land, was found 
in the slope ranging from 30% to 60% and the next higher 
value, covering 489 021 hectares (26%) lied under the 15% to 
30% slope range. The cultivated land unit covered nearly 18% 
and 22% of the total land cover for terrain slopes ranging from 

15% to 30% and 30% to 60%, respectively. However, the per-
cent coverage of cultivated land dropped to 1.6% of the total 
(4.1%) for agriculturally inaccessible slopes (slope >60%). For 
terrain slopes between 0% to 2% and 5% to 8%, nearly half the 
total slope area, 0.5% of 1.1% and 2.1% of 2.9%, respectively, 
was covered by cultivated land. The remaining half percentage 
was represented by the other 11 land cover units.

The next higher proportion of the area was covered by 
woodland making nearly 0.1%, 2.1%, 0.4%, 3.5%, 3.8%, 2.5%, 

Figure 10.  Land cover map: (C) 2005 and (D) 2009.

Downloaded From: https://staging.bioone.org/journals/Air,-Soil-and-Water-Research on 24 Jan 2025
Terms of Use: https://staging.bioone.org/terms-of-use



Ayele et al	 15

and 0.1% of the total area for increasing order of slopes indi-
cated in the table. The distribution of the other land cover units 
can also be statisticized from the tabular data. The relation 
between terrain slope and land cover units for the year 2014 is 
detailed in Table 4. The slope map of the area (Figure 12, left) 
and the land use, soil, and slope overlay map for the country at 
large (Figure 12, right) were presented to spatially cross-refer-
ence the distribution of different land cover units with soil and 
terrain slope for the study area.

In general, the major proportion of the area for each slope 
range was covered by cultivated land. From the row total column, 
rounded to the nearest 10th, it can be seen that following the 
cultivated land (62.8%), wood (12.4%), bush (8.4%), shrub (6.1%), 
and grass (4.1%) land units accounted 31% of the total area. The 
remaining 7 land cover units covered nearly 6.2% of the entire 
area. The significant change in cultivated land areas across the 
slope was mainly due to accelerated human impact with popula-
tion increase and subsequent agricultural land expansion.

Figure 11.  Land cover map: (E) 1995 and (F) 2014.
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Implementation of various land management practices 
and human choices of land use has changed over time due to 
the impacts of land elevation. In addition, the climate of the 
area greatly varies with elevation from mountain ridges to 
valley bottoms influencing the different land use classes. The 
elevation-land cover area relationship with varying slope 

ranging from 0% to more than 60% (Table 4, Figure S3) 
clearly indicated that the elevation distribution of each land 
use type was different. The ML land cover classification for 
the year 2014 (Figure S3, Table 4) showed that the distribu-
tion of land cover units correlates reasonably well with the 
variations in terrain slope. There is a general perception that 

Table 4.  Percent terrain slope and distribution of land cover units for the 2014 land cover map.

Percent slope class and area coverage (hectares)

Major 
land unit

0%-2% 2%-5% 5%-8% 8%-15% 15%-30% 30%-60% >60% Row total 
%

Built-up 66 4683 719 5662 2812 1206 57 0.81

Bushland 99 956 506 5854 31 411 106 775 11 588 8.37

Cultivated 
land

9697 139 918 40 195 218 637 336 931 403 052 30 043 62.78

Woodland 473 15 332 1701 8167 5778 5045 157 1.95

Exposed 
surface

175 1019 11 752 3064 22 521 15 701 2.30

Forest land 1601 6694 192 2849 11 508 46 323 8316 4.13

Grassland 1302 943 0 36 9 153 14 0.13

Marshland 79 2097 33 728 1549 2372 99 0.37

Riparian 
vegetation

765 24 042 3971 18 310 23 841 38 160 5777 6.12

Shrubland 0 0 0 288 539 3292 3636 0.41

Afro-alpine 
veg.

4012 81 0 49 46 62 0 0.23

Water body 1456 38 439 8006 66 470 71 533 45 865 978 12.40

  100.00

Column total 
area, 
hectares

19 725 234 204 55 334 327 802 489 021 674 826 76 366 1 877 278

Column total 
%

1.1 12.5 2.9 17.5 26.0 35.9 4.1 100.00

Figure 12.  Slope gradient of the study area in the country map (left) and overlay analysis (right): (A) land use, (B) soil, (C) slope, (D) overlay, and (E) study 

area overlay map.
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agricultural areas tend to expand towards soils that are suita-
ble for agriculture.

Conclusions
Human-induced LULC alterations affect the patterns of cli-
mate, natural hazard, and socioeconomic dynamics at local and 
global scales. As a result, mapping LULC changes is essential 
for a wide range of applications, including landslide, erosion, 
and land planning activities. In this research, the rate, trend, 
and magnitude of land cover change for the past 2 decades, 
1995 to 2014, were quantified in a 18 772.78-km2 study area. 
The area was experiencing a considerable amount of environ-
mental change in the form of deforestation, cultivation, and 
development activities. For detailed analysis of the spatiotem-
poral change dynamics, we employed pre-NDVI and object-
based supervised classification technique that uses the Bayesian 
ML classification. Post-classification comparison approach 
was used to analyse the LULC change between initial and final 
state images.

The time series analysis of land cover change study proved 
that there were 12 major land cover units, namely, cultivated, 
woodland, built-up, bush, exposed surface, forest, grass, marsh, 
riparian forest, shrub, afro-alpine, and water body. Each of 
these land use types was influenced by the landform, soil, cli-
mate, and human activities. The natural woody vegetation, 
bush, and shrubland units had been tremendously converted 
to cultivated land. The study based on 2014 using cloud-free 
Landsat TM image and field survey revealed that about 63% 
of the land was in actual cultivation. Of which intensive cul-
tivation covered about 35% of the entire cultivated area and 
the remaining 65% in the mapping unit comprised scattered 
and moderately cultivated lands. The expansion of cultivated 
land was higher (11.14% change) for the past decade, from 
2005 to 2014, due to rapid increase in population and 
resettlement.

In 2014, the largest cultivated land portion of the corridor 
inventoried in the area indicated that almost all potential agri-
cultural areas in the mid-altitude were under cropping. A sub-
stantial portion of the study area (4.13%) was covered by 
different categories of grassland, whereas afro-alpine and sub-
afro-alpine vegetation, forest, woodland, and shrubland units 
covered 0.41%, 2.3%, 12.4%, and 6.11% of the land area, 
respectively. Lowland plain areas which had been under dense 
and open woodlands and wooded grasslands were converted to 
croplands by resettlers from highlands and intervention of 
investors producing cash crops. Considering the decadal analy-
sis of LULC change, the spatial extent of agricultural areas has 
shown an amplified response at the expense of other land use 
units.

The elevation-land cover area relationship (based on 2014 
image analysis) with slope ranging from 0% to more than 60% 
showed that the elevation distribution of each land use type 
was different. There was a significant change in cultivated land 
areas across the slope due to accelerated human impact and 

subsequent need for arable lands. The result of this study pro-
vides a vital monitoring basis for continuous investigations of 
changes in the natural vegetation and will help decision makers 
to develop plans to effectively manage their land resources.
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