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Abstract

The placenta is an important organ for the exchange of substances between the fetus and the mother, hormone secretion, and fetoplacental
immunological defense. Placenta has an organ-specific distribution of ion channels and trophoblasts, and placental vessels express a large
number of ion channels. Several placental housekeeping activities and pregnancy complications are at least partly controlled by ion channels,
which are playing an important role in regulating hormone secretion, trophoblastic homeostasis, ion transport, and vasomotor activity. The
function of several placental ion channels (Na, Ca, and Cl ion channels, cation channel, nicotinic acetylcholine receptors, and aquaporin-1) is
known to be influenced by chemical exposure, i.e., their responses to different chemicals have been tested and confirmed in experimental
models. Here, we review the possibility that placental ion channels are targets of toxicological concern in terms of placental function, fetal
growth, and development.

Summary Sentence
Ion channels participate in regulating key placental functions. The effects of chemicals affecting ion channels have rarely been studied although
theoretically these compounds could cause pregnancy complications.

Keywords: placenta, ion channel, trophoblast, smoking, chemical exposure, pharmaceuticals

Introduction

The human placenta is a complex organ between the
mother and the fetus. The primary function of the placenta
is the exchange of nutrients, gases, and other substances
between the mother and the fetus. Placenta also serves as
a fetal nutrient storage site and produces hormones such as
estrogen and progesterone, placental lactogen, and human
chorionic gonadotropin (hCG). In addition, the placenta has
defensive and immunomodulatory capabilities. Placenta has
the semipermeability of membrane barrier selection, and it
synthesizes immunomodulatory factors such as cytokines to
protect the fetus. Finally, the placenta also regulates fetal
metabolism, especially during the early and mid-term stages
of pregnancy [1, 2].

Exposure to chemicals during pregnancy, such as maternal
smoking, medication, consumer chemical products, and
through environmental pollution, may affect the placental
function and, in the worst case, may even result in an adverse
pregnancy outcome [3]. Many chemical compounds can
cross the placental barrier and gain further access to the
fetal compartment [4]. The transfer is conducted through the
chorionic membrane barrier, a polarized epithelial structure,
which develops from the syncytiotrophoblast cells and has
several specific transport mechanisms including ion channels
and transporters [5]. Ion channels are specialized membrane-
spanning, pore-forming protein macromolecules, which
facilitate the rapid transmembrane transfer of water-soluble

molecules such as inorganic ions [6]. Owing to the different
functions in different tissues and organs, the distribution of
ion channels and subtypes tend to be organ specific. Although
the activation of an ion channel is selective for its particular
ions, its physiological consequences can be diverse.

Placental housekeeping activities are susceptible to chemi-
cals and at least partly controlled by ion channels [5]. Conse-
quently, these channels have great physiological and patholog-
ical significance. The objective of this review was to provide an
update and comprehensive insight into placental ion channels.
We review the information on expression of ion channels
in human placental tissue and primary cells. Furthermore,
we highlight the possibility that placental ion channels are
targets of toxicological concern in terms of placental function,
fetal growth, and development based on studies obtained in
different placental platforms.

Placental ion channels

Ion channels have two major characteristics: the first is selec-
tivity––one type of channel preferentially passes certain ions,
whereas other ions cannot easily pass through that channel.
The second characteristic is an ability to switch; ion channels
exist in two states, open and closed states. Ion channels can
be divided into various ion channel subtypes depending on
the type of ion and activation [6]. Human placenta expresses
a large number of ion channels. The data on ion channels in
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human placental tissue and primary placental cells are shown
in Table 1. The studies include placental tissue or primary
cells from all trimesters of pregnancy, and also from abnormal
pregnancies. For many ion channel types, the data on the
human placenta are limited to mRNA expression studies.
Among the most studied ion channels in placental platforms
are nicotine acetylcholine receptors (nAchR), transient recep-
tor potential channels (TRPs) TRPP2, TRPV5, and TRPV6,
aquaporins (AQP) 3, 8, and 9, and connexin 43 (Cx43).

Calcium channels

Calcium transfer in the human placenta mainly occurs
through the syncytiotrophoblasts and calcium channels are
the most widely distributed type of ion channel in the placenta
[116,117]. In placenta, voltage-gated L-type Ca channel
isoforms (Cav1.1, Cav1.2, and Cav1.3), and Cav1.4 have been
detected in syncytiotrophoblasts [63,64], where these chan-
nels would also have a role in cell signaling and protein secre-
tion [117]. In placental blood vessels, voltage-gated L-type Ca
channels are mainly involved in regulating the hypoxic feto-
placental vasoconstriction [118] and in syncytiotrophoblasts,
these channels would have a role in also in cell signaling
and hormone secretion in addition to cellular Ca2+ entry
[63–65].

Transient receptor potential channels

Human placenta expresses several isoforms of TRPs [116], of
which transient receptor potential cation channel subfamily C
(TRPCs) may have a role in store-operated calcium entry (i.e.,
activated by intracellular calcium released particularly from
the endoplasmic reticulum store) in the placenta. In addition,
TRPV5 and − 6 are calcium selective channels that seem to be
strongly involved in the calcium transport from the mother to
the fetus [15]. In fact, mutations in TRPV6 coding gene were
shown to interfere with calcium transport through the pla-
centa and cause fetal calcium deficiency, hyperparathyroidism,
and metabolic bone disease [119]. In addition, a non-selective,
voltage-dependent TRPP2 channel (polycystin-2) is located at
the apical membrane of the syncytiotrophoblasts with a high
permeability to Ca2+ but also permeable to Na+ and K+ [53].
It may be important for Ca2+ transport but also for regulation
of other ions transport in the placenta [53–56].

Chloride channels

Placental chloride channels are important for chloride trans-
port at the plasma membrane. The members of chloride intra-
cellular channel (CIC) proteins are ubiquitously expressed and
involved in the transplacental passage of chloride but also
in the regulation of several other cellular processes including
proliferation, differentiation, and apoptosis although their
role is not completely understood [89–91]. However, the
expression of these chloride channels is increased in pla-
centae of pre-eclamptic (PE) and intra-uterine growth retar-
dation pregnancies (IUGR), but it remains to be studied
whether they contribute to pathological processes of these
conditions [65,90]. Maxi-chloride channel is a complex with
solute carrier organic anion transporter family member 2A1
(SLCO2A1) as pore-forming component and two auxiliary
regulatory proteins, annexin 2 and S100 calcium binding
protein A10 (S100A10) [115] Maxi-chloride channel has been
shown to be regulated by arachidonic acid, fatty acids and

steroid hormones [120]. In addition to chloride, the maxi-
chloride channel is permeable to amino acids and it may have
a role in placental volume regulation [121].

Potassium channels

Potassium channels play important physiological roles in
the human placenta including membrane permeability to K+
ions, the control of fetoplacental blood flow, and hormone
secretion [122]. With respect to the identified potassium chan-
nels, many members of voltage-gated, calcium and sodium -
activated and 2-pore domain potassium channels participate
in hormone secretion in the placenta [33,36,42,46,48,123–
125]. Many K-channels distributed in the placental blood
vessels are oxygen-sensitive and participate in controlling the
vascular tone of the placental blood vessels [42,125,126]. In
fetal growth restriction, gene expression of voltage dependent
potassium channel KV9.3 and KV2.1 was increased in placen-
tal tissue and veins, respectively [34]. Similarly, the expres-
sion of Kv2.1, inwardly rectifying potassium channel Kir2.1
increased in the basal membrane of placentas from PE and
IUGR pregnancies compared to placentas of healthy preg-
nancies, where these channels were mainly present in the
apical membrane [33]. In addition, during the differentia-
tion of cultured human trophoblasts, the expression of KV7
channel subunits (KCNQ1, KCNE1, KCNE3, and KCNE5)
was decreased by hypoxia and induced in an oxygen-rich
environment [42]. Altogether, the changes in the expression
of potassium channels in vasculature and trophoblasts, and
their localization between apical and basal membranes in
pathological conditions such as PE and IUGR [33,34,42]
suggest that these ion channels may have a role in regulating
placental physiology.

Other ion channels

Several subunits and receptor subtypes of nicotinic acetyl-
choline receptors nAChR are expressed in the placenta. In
PE, expression of several mAChR subunits is dysregulated
[17,18]. Placenta also expresses an epithelial sodium chan-
nel (ENaC), which is located in the apical membrane of
cytotrophoblasts [7]. The expression of ENaC is regulated
by aldosterone and a reduced amount of ENaC is reported
in PE [127]. In addition to control of the intracellular flow
of sodium ions, ENaC may promote cell migration in the
placenta [127,128]. In addition, the expression of π subunit of
the ion channel gamma-aminobutyric acid (GABA) A receptor
(GABRP) is also increased in the placentas of patients with
PE. In HTR-8/SVneo trophoblastic cells, GABRP was shown
to promote apoptosis and inhibit the invasion of trophoblastic
cells that could have a role in the onset of PE [12]. Further-
more, a special type of ATP-activated ion channels called the
purinergic receptors are expressed in human cytotrophoblast
cells. Ligand-gated P2X4, P2X7, and G protein-coupled P2Y2
and P2Y6 have been reported to modulate the intracellular
concentration of Ca2+ and K+ efflux in cytotrophoblasts
[24,25] although their significance in the control of placental
electrolyte transport is not studied in detail and consequently
their role in the placenta is not yet known. In addition,
several aquaporins (AQPs), water channels that also have an
additional ion channel function, are expressed in the human
placenta on placental trophoblasts, chorionic villi, and fetal
membrane [129]. In the placenta, as water channels, they have
a role as a regulator of maternal-fetal fluid flow but the ion
channel roles remain to be defined [130].
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Table 1. The distribution of ion channels in human placental tissue and primary human placental cells

Expression in placenta

Name Gene name mRNA∗ Protein∗∗ Localization∗∗∗ References

Ligand-gated ion channels

Epithelial sodium channels

ENaCα SCNN1A + + Cytotrophoblasts, syncytiotrophoblasts [7–11]
ENaCβ SCNN1B + + Syncytiotrophoblasts [7,10]
ENaCγ SCNN1C + + Syncytiotrophoblasts [7,9,10]

GABA-type receptors
GABA A GABRP + + Cytotrophoblasts, syncytiotrophoblasts. [12–14]

Inositol 1,4,5-trisphosphate receptors (IP3R)
IP3R1 ITPR1 + − − [15]
IP3R2 ITPR2 + − − [15]
IP3R3 ITPR3 + − − [15]

Nicotine acetylcholine receptors
nAchRα1 subunit CHRNA1 + − − [16]
nAchRα2 subunit CHRNA2 + + Syncytiotrophoblasts, villi [16–19]
nAchRα3 subunit CHRNA3 + + Syncytiotrophoblasts, blood vessels [16–19]
nAchRα4 subunit CHRNA4 + + Syncytiotrophoblasts, blood vessels [16–19]
nAchRα5 subunit CHRNA5 + + Syncytiotrophoblasts, blood vessels [16–19]
nAchRα6 subunit CHRNA6 + + − [16,17,19]
nAchRα7 subunit CHRNA7 + + Cytotrophoblasts, syncytiotrophoblasts, villi,

blood vessels
[17–21]

nAchRα9 subunit CHRNA9 + + Syncytiotrophoblasts, villi, blood vessels [16–19]
nAchRα10
subunit

CHRNA10 + + Syncytiotrophoblasts, blood vessels [16,17,19]

nAchRβ1 subunit CHRNB1 + + Villi [16–18,22]
nAchRβ2 subunit CHRNB2 + + Villi [16–18]
nAchRβ3 subunit CHRNB3 + − − [16]
nAchRβ4 subunit CHRNB4 + − − [16,17]
nAchRδ subunit CHRND + + Villi [16–18]
nAchRγ subunit CHRNG + − − [16]
nAchRε subunit CHRNE + − − [16,17]

P2X receptors
P2X1 P2RX1 + − Blood vessels [23]
P2X4 P2RX4 + + Cytotrophoblasts, blood vessels [23–25]
P2X5 P2RX5 + − Blood vessels [23]
P2X6 P2RX6 + − Blood vessels [23]
P2R7 P2RX7 + + Cytotrophoblasts, blood vessel [23,24]

ZAC
ZAC ZACN + − [26]

Potassium channels

Calcium- and sodium-activated potassium channels
KCa1.1 KCNMA1

KCaα

+ + Blood vessels [27–29]

KCNMB1
BKCaβ

+ + Blood vessels [30]

KCa2.1 KCNN1
SKCa1, SK1

+ + Blood vessels [31]

KCa2.3 KCNN3
SKCa3,

+ − Blood vessels [28]

KCa3.1 KCNN4
IKCa, IK1,
IKCa3.1,
SKCa4

+ + Cytotrophoblasts, blood vessels [28,31,32]

Inwardly rectifying potassium channels
Kir2.1 KCNJ2 + + Syncytiotrophoblasts, blood vessels [33–35]
Kir6.1 KCNJ8 + + Syncytiotrophoblasts, blood vessels [29,34,36]
Kir6.2 KCNJ11 + − Blood vessels [36]

Two P domain potassium channels
K2p2.1 (TWIK) KCNK1 + − − [37]
K2p2.1 (TREK1) KCNK2 + + Cytotrophoblasts, syncytiotrophoblasts [33,38]

(continue)
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Table 1. Continued.

Expression in placenta

Name Gene name mRNA∗ Protein∗∗ Localization∗∗∗ References

K2p3.1 (TASK1) KCNK1 + + Cytotrophoblasts, syncytiotrophoblasts, blood
vessels

[29,33,38]

K2p4.1 (TRAAK) KCNK4 + − − (Lesage, Maingret and
Lazdunski, 2000)

K2p5.1 (TASK2) TASK2
KCNK5

+ − − [38]

K2p6.1 (TWIK2) KCNK6 − + Blood vessels [39]
K2p7.1 (TWIK3) KCNK7 − + Blood vessels [39]
K2p9.1 (TASK3) KCNK9 − + Blood vessels [39]
K2p13.1 (TASK5) KCNK15 + − − [38]
K2p17.1 (TALK2,
TASK4)

KCNK17 + − − [38,40]

K2p18.1
(TRESK-2)

KCNK18 + − − [41]

Voltage-gated potassium channels
Kv1.5 KCNA5 + + Blood vessels [27]
Kv2.1 KCNB1 − + Syncytiotrophoblasts, blood vessels [27,29,33,34]
Kv3.1 KCNC1 − + Blood vessels [27]

KCNE1 + + − [42–44]
KCNE2 + [43,44]
KCNE3 + − − [42–44]
KCNE4 + − − [42,44]
KCNE5 + − Syncytiotrophoblasts, blood vessels [42–44]

Kv6.2 KCNE6 − + [45]
Kv7.1 KCNQ1 + + Blood vessels [42–44,46,47]
Kv7.2 KCNQ2 + + Blood vessels [43,44,47]
Kv7.3 KCNQ3 + + Syncytiotrophoblasts, blood vessels [42–44,46,47]
Kv7.4 KCNQ4 + + Blood vessels [43,44,46,47]
Kv7.5 KCNQ5 + + Blood vessels [42,43,46,47]
Kv9.3 KCNS3 + + Syncytiotrophoblasts, blood vessels [29,34,48]

Ryanodine receptors
RyR1 RYR1 + − Cytotrophoblasts, syncytiotrophoblasts [15,49]
RyR2 RYR2 + − − [15]
RyR3 RYR3 + − Cytotrophoblasts, syncytiotrophoblasts [15,49]

Transient receptor potential cation channels
TRPC1 TRPC1 + + − [50]
TRPC3 TRPC3 + − Cytotrophoblasts, syncytiotrophoblasts [50]
TRPC4 TRPC4 + + Cytotrophoblasts, syncytiotrophoblasts [50]
TRPC5 TRPC5 + − − [50]
TRPC6 TRPC6 + + Syncytiotrophoblasts [50]
TRPM2 TRPM2 + [51]
TRPM4 TRPM4 + [51]
TRPM7 TRPM7 + [51]

TRPP (polycystin) family
TRPP1 PKD2 + + Trophoblasts [52]
TRPP2 PKD2L1 + + Syncytiotrophoblasts, trophoblasts [52–59]

TRPV (Vanilloid) family
TRPV1 TRPV1 + + Cytotrophoblasts, syncytiotrophoblasts [60,61]
TRPV4 TRPV4 + + Cytotrophoblasts, syncytiotrophoblasts [62]
TRPV5 TRPV5 (ECaC1,

CaT2)
+ + Syncytiotrophoblasts, villi [15,63–65]

TRPV6 TRPV6 (ECaC2,
CaT1)

+ + Syncytiotrophoblasts, villi [15,63,65,66]

Voltage-gated calcium channels
CaV1.1 CACNA1S + + Syncytiotrophoblasts, villi [65]
CaV1.2 CACNA1C + + Syncytiotrophoblasts, villi, blood vessels [39,63,65]
CaV1.3 CACNA1D + − − [63]

Voltage-gated sodium channels
Nav1.8 SCN10A + − − [67]

Other ion channels

Aquaporins
AQP1 AQP1 + + Cytotrophoblasts, villi blood vessels [68–71]
AQP2 AQP2 − + Syncytiotrophoblasts, trophoblasts [72]

(continue)
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Table 1. Continued.

Expression in placenta

Name Gene name mRNA∗ Protein∗∗ Localization∗∗∗ References

AQP3 AQP3 + + Cytotrophoblasts, syncytiotrophobasts, villi [68–71,73–77]
AQP4 AQP4 + + Syncytiotrophoblasts, villi, endothelial cells [68,71,78,79]
AQP5 AQP5 + − Villi [68]
AQP8 AQP8 + + Cytotrophoblasts, syncytiotrophoblasts, villi [68,70,71,80–83]
AQP9 AQP9 + + Cytotrophoblasts, syncytiotrophoblasts, villi [68,70,71,73,80,81,83–

88]
AQP11 + − Villi [68]

Chloride channels

ClC (CLC)-family
CIC-1 CLCN1 + + Trophoblasts [89]
CIC-3 CLCN2 + + Cytotrophoblasts, syncytiotrophoblasts,

trophoblasts
[90,91]

CIC-4 CLCN4 + + Trophoblasts, villi [89]
CIC-5 CLCN5 + + Trophoblasts, villi [89,91]

CFTR-family
CFTR CFTR + + − [11,92–95]

Maxi chloride channels
Maxi-Cl− # − + Syncytiotrophoblasts, trophoblasts [96]

Connexins and pannexins
Cx26 GJB2 + Syncytiotrophoblasts [97]
Cx31 GJB3 + Syncytiotrophoblasts [97]
Cx32 GJB1 + + Cytotrophoblasts, syncytiotrophoblasts,

trophoblasts
[97–99]

Cx37 GJA4 + Syncytiotrophoblasts [97,99]
Cx40 GJA5 + + Cytotrophoblasts, syncytiotrophoblasts,

endothelial cells
[97,99–102]

Cx43 GJA1 + + Cytotrophoblasts, syncytiotrophoblasts,
trophoblasts, villi

[97–100,102–111]

Cx45 GJC1 + + Syncytiotrophoblasts [97,99]
Cx46 GJA3 + Syncytiotrophoblasts [97]
Px1 Panx1 + + Syncytiotrophoblasts [97,112]
Px2 Panx2 + Syncytiotrophoblasts [97]
Px3 Panx3 + Syncytiotrophoblasts, trophoblasts, villi [97,105]

Piezo channels
Piezo1 PIEZO1 + Endothelial cells [113]

Orai channels
Orai1 Orai1 + − [114]

∗In situ hybridization, Northern Blot, RT-PCR were used to measure mRNA levels, ∗∗western blot to detect protein and ∗∗∗immunohistochemistry,
immunocytochemistry and immunofluorescence as well as cell fractions and vesicles were used to report localization of ion channels. #A complex with
solute carrier organic anion transporter family member 2A1 as a core pore-forming component and two auxiliary regulatory proteins, annexin A2 and S100
calcium binding protein A10 [115]. CaV, voltage-gated calcium channel; CFTR, cystic fibrosis transmembrane conductance regulator (ATP-binding cassette
sub-family C, member 7); CLC, chloride channel; Cx, connexin; K2P, two-pore domain potassium channel; KCa, calcium-activated potassium channel;
Kir, inwardly rectifying potassium channel; nAchR, nicotinic acetylcholine receptor; NaV, voltage-gated sodium channel; P2X, purinergic receptor P2X
Px, pannexin; Ryr, ryanodine receptor; TRPM, transient receptor potential cation channel subfamily M; TRPP, transient receptor potential cation channel
subfamily P; TRPV, transient receptor potential cation channel subfamily V; ZAC, zinc-activated channel.

The effect of chemical exposure on placental
ion channels

Chemicals in tobacco products

Effects of chemical exposure on ion channels have been
studied in multiple placental platforms. We have reviewed
the findings on experimental models including cell lines
and experimental animal studies in Table 2. Smoking during
pregnancy is the most common type of chemical exposure to
placenta, e.g., leading to disturbed trophoblast morphology
and invasion, reduction in placental development, and
ultimately retarded fetal growth [131,132]. Studies with
the term placentas have indicated that cigarette smoke and
nicotine can dysregulate levels of nAchR subtypes in the pla-
centa [16,18,133–137]. In addition, nicotine competes with

endogenous acetylcholine for binding to nAChRs [138]. In
fact, nAChRs in rat trophoblast cells are responsive at nicotine
concentrations similar to nicotine plasma levels detected
among moderate to heavy cigarette smokers [16,19,137].
One of the possible mechanisms by which nicotine impairs
placental function could be increased endoplasmic reticulum
stress via nAChR [138]. In addition, nicotine has been shown
to suppress placental cytokine production mediated through
the nAChR pathway [136].

In addition, heavy metals such as cadmium, which are
also present in tobacco smoke, can inhibit placental leptin
synthesis, partly explaining the endocrine-disrupting effects of
cadmium [147]. In a study using a human embryonic kidney
HEK293 cell line, cadmium significantly inhibited calcium ion
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Table 2. Effects of smoking and chemical exposure on ion channels obtained in different placental platforms

Chemical Ion channel Material Experimental results References

Cigarette smoke nAchR Full term human placenta Increased expression of nAChRα9 and β1 subunits [18]
Nicotine nAchR Full term human placenta Increased levels of nAChRα9 subunit and decreased

levels of nAChRδ

[16]

Nicotine nAchR HTR-8/SVneo cells Suppressed invasiveness of human trophoblasts by
downregulation of CXCL12 expression through
nAChRα7 subunit

[134]

Nicotine nAchR BeWo cells Increased expression of nAChRα9 subunit [135]
Nicotine nAchR Rat placental explants Regulated increased expression of nAChRα7 subunit

in placenta after lipopolysaccharide treatment
[133]

Nicotine nAchR In vivo in rats, rat
trophoblast Rcho-1 cell line

Increased expression of nAChRα4 subunit [137]

Nicotine nAchR Rat trophoblast Rcho-1 cell
line

Increased endoplasmic reticulum stress via nAChR. [138]

Nicotine nAchR Primary human placental
cells

Inhibited cytokine production via nAChR pathway [136]

Aflatoxin B1 TRPs Placental JEG-3 cells Increased mRNA levels of TRP subtypes C3, C4,
C6, V5, P2
TRPC3 mediated AFB1 induced increase in COX-2
expression

[139]

Zeranol TRPs Placental JEG-3 cells Increased mRNA levels of TRP subtypes C3, C6, P2
TRPC3 mediated zeranol induced increase in
COX-2 expression

[140]

Bisphenol A, octylphenol TRPV6 Mouse placenta Decreased mRNA levels of TRPV6 [141]
Bisphenol A ENaCα Mouse fetal membrane Decreased ENaCα protein levels [142]
Aroclor 1254 AQP1 Mouse placenta

Human HTR8 cells
Reduced AQP1 protein levels [143]

ROS TRPP2 Human
syncytiotrophoblasts

Inhibited TRPP2 activity [58]

Aldosterone ENaC BeWo cells Modulated ENaC currents [128,144]
Aldosterone ENaCα Human HTR8/SVneo cell

line
Upregulated ENaCα protein expression
ENaC activity was important for trophoblast cells
invasion

[8]

Prolactin,
hGC

ENaCα Human HTR8/SVneo cell
line

Upregulated ENaCα protein expression [8]

Verapamil, nifedipine Calcium channel Human first trimester
placental tissue

Inhibited GnRH-stimulated hCG secretion [145]

17-beta-estradiol,
tamoxifen

Maxi-Cl- channel Human placental apical
membrane vesicles

Steroid hormones may regulate transplacental
chloride transport

[146]

Bicuculline GABA type A
receptor

Human first trimester
trophoblasts

Inhibited hCG secretion [13]

Capsasin TRPV1 Human cytotrophoblasts Inhibited hCG secretion
Impaired the spontaneous in vitro differentiation of
cytotrophoblasts into syncytiotrophoblasts

[60]

Leptin AQP9 Human placental explants Upregulated AQP9 expression [84]

CXCL12, C-X-C Motif Chemokine Ligand 12; GnRH, Gonadotropin-releasing hormone; JEG-3, Human choriocarcinoma cell line; nAchR, Nicotinic
acetylcholine receptor; TRPV5/6, Transient receptor potential cation channel subfamily V member 5/6.

flow into the cells, and this was attributed to a competitive
inhibition of two important ion channels TRPV5 and TRPV6
[148], both of which are important in fetal placental cal-
cium transport as well [149], indicating that cadmium could
directly affect fetal bone development via these ion channels.

Environmental contaminants

Several common environmental pollutants such as dichloro-
diphenylethylene (DDE), bisphenol A, brominated flame
retardants, polychlorinated biphenyls, and fungal metabo-
lites such as aflatoxins can be detected in the placenta
[3]. Studies with the JEG-3 cell line demonstrated that
endocrine-disrupting chemicals (EDCs), aflatoxin B1, and
zeranol can significantly increase the mRNA levels of
TRPC3 ion channel and increase intracellular calcium levels
[139,140]. In addition, the experiments in pregnant mice
demonstrated that bisphenol A and octylphenol significantly

reduced placental TRPV6 mRNA levels, and furthermore
disturbed fetal bone development in mice [141]. In another
study, after intervention with bisphenol A, the expression
of epithelial sodium channel alpha (ENaCα) protein in
the decidua was significantly down-regulated detected by
immunohistochemistry [142]. Thus, it has been suggested that
exposure to BPA leads to impaired decidualization through
a reduced serum glucocorticoid-induced kinase 1-mediated
downregulation of ENACα [142,150]. In epidemiological
studies, polychlorinated biphenyls (PCB) and other chlorides
have been linked with serious adverse effects on maternal
health and fetal development including growth restriction
[151] impaired immune response [152] and neurobehavioral
deficits [153] in the child. Finally, there is convincing evidence
that aquaporin 1 (AQP1) is involved in the production of
fetal amniotic fluid [154]. In the placenta of pregnant mice
exposed to PCB, the protein expression of placental AQP1
was significantly downregulated in comparison to normal

Downloaded From: https://staging.bioone.org/journals/Biology-of-Reproduction on 25 Nov 2024
Terms of Use: https://staging.bioone.org/terms-of-use



Y. Zhao et al., 2023, Vol. 108, No. 1 47

wild-type mice, and the amount of amniotic fluid was
significantly increased [143].

Pharmaceuticals

Several well-known pharmaceuticals even act via ion channels
and some of them have been shown to affect placental func-
tion. A class of antihypertensive drugs, i.e., dihydropyridines
have been shown to stimulate the secretion of hCG via calcium
channels. Inhibited hCG secretion was also seen in response to
capsaisin in human primary cytotrophoblasts, where capsaisin
impaired differentiation of cytotrophoblasts into syncytiotro-
phoblasts by activating TRPV1 [60]. In addition, also GABA-
A receptor agonis bicuculline can inhibit hCG secretion [13].
On the other hand, hCG, prolactin, and aldosterone were able
to upregulate ENaCα protein expression in human extravil-
lous trophoblast cell line [8].

Placenta is a highly active endocrine organ, and several
ion channels are regulated by hormones. For example, 17β-
estradiol (and tamoxifen) have been shown to regulate
the Maxi-chloride channel in apical membranes from
human placental syncytiotrophoblasts [146]. Furthermore,
exogenous progesterone was shown to upregulate TRPV5
and TRPV6 mRNAs in ovine placentome [155] and an
energy metabolism-regulating hormone leptin upregulated
AQP9-expression in human trophoblast explants [84]. Finally,
human term cytotrophoblast expresses the mineralocorticoid-
responsive genes including ENaCα ja ENaCγ subunits [9] and
it has been shown that aldosterone can promote cell migration
via ENaC in BeWo cells [128,144].

Concluding remarks

A large number of ion channels are distributed in the placenta
where they have several important functions (1) to regulate the
synthesis and secretion of hormones, (2) to ensure homeostasis
of trophoblasts, (3) to control the transport of trace ele-
ments between mother and fetus, and (4) to regulate vascular
contraction and relaxation. It has been confirmed that the
placental ion channels exposed to chemicals can undergo
functional and quantitative changes, which in turn could
affect the normal function of the placenta and the growth and
development of the fetus. However, so far, there are rather few
reports on the effects of the chemical compounds on placental
ion channels. The responses of placental ion channels to
chemical exposure, which may be either direct or indirect, can
potentially lead to pregnancy complications such as abortion,
premature delivery, fetal growth restriction, fetal development
abnormalities, etc. Further focused investigations using pla-
cental platforms are needed to clarify the potential role of
chemical-induced ion channels medicated effects on placental
housekeeping functions and whether pharmaceuticals acting
via ion channels can become potential therapies in selected
obstetric complications.
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