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ARTICLE

Variability in Fish Tissue Proximate Composition is
Consistent with Indirect Effects of Hypoxia in Chesapeake
Bay Tributaries

Troy D. Tuckey* and Mary C. Fabrizio
Virginia Institute of Marine Science, College of William and Mary, 1375 Greate Road, Gloucester Point,
Virginia 23062, USA

Abstract
The spatial and temporal extent of summer hypoxia (dissolved oxygen [DO] concentration ≤ 2 mg/L) in

Chesapeake Bay and its tributaries has been increasing for decades, consequently affecting fish distribution and
abundance by shifting biomass to non-hypoxic habitats. Hypoxia in coastal waters impacts food web dynamics,
thereby limiting ecosystem productivity and affecting regional fisheries. Additionally, laboratory studies of Atlantic
Croakers Micropogonias undulatus have shown that hypoxia serves as an endocrine disruptor, reducing the
production of the yolk precursor vitellogenin as well as affecting other biochemical pathways. Reproductive
potential is therefore lower in hypoxia-exposed Atlantic Croakers than in fish that are taken from normoxic
conditions. We examined field-caught Atlantic Croakers from three Chesapeake Bay tributaries with different
DO levels to evaluate patterns in the lipid content of somatic and gonadal tissues. We found that somatic lipid
content was not affected by the presence of hypoxia, whereas ovarian lipid content was significantly affected by the
severity of hypoxia. Furthermore, Atlantic Croakers that were exposed indirectly to mild hypoxia (lasting hours to
days) exhibited greater ovarian lipid content than fish that were captured from normoxic sites. As expected, severe
hypoxia reduced the ability of Atlantic Croakers to accumulate lipids in their ovaries, likely affecting reproductive
output. Stock assessment models that ignore the effects of hypoxia may yield overly optimistic production estimates
for hypoxia-exposed populations, particularly if environmentally invariant fecundity and growth are assumed.

The increasing occurrence of hypoxia (dissolved oxygen
[DO] concentration ≤ 2 mg/L) in coastal waters impacts food
web dynamics, limits ecosystem productivity, and affects
regional fisheries (Boesch et al. 2007; Diaz and Rosenberg
2008). Hypoxia also alters fish distribution and abundance by
shifting biomass to non-hypoxic regions (Ludsin et al. 2009;
Keller et al. 2010; Craig 2012; Buchheister et al. 2013; Craig
and Bosman 2013). Depending on its timing and duration,
hypoxia can generate a variety of effects on aquatic systems

(Diaz and Rosenberg 2008; Seitz et al. 2009). For example,
severe seasonal hypoxia in coastal systems can redirect energy
from higher trophic levels (e.g., fish) to microbes, resulting in
a loss of fish production and a subsequent decrease in ecosys-
tem services (Baird et al. 2004; Diaz and Rosenberg 2008).
Conversely, mild periodic hypoxia (lasting hours to days) may
actually increase food availability as the fish feed opportunis-
tically on stressed benthos (Pihl et al. 1992; Long and Seitz
2008). In between these extremes, seasonal hypoxia may lead
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to (1) alterations in the prey resources that are available to fish
(Pihl et al. 1992) and (2) changes in the spatial distribution of
fish (Eby and Crowder 2002; Buchheister et al. 2013; Craig
and Bosman 2013).

The spatial and temporal extent of summer hypoxia in
Chesapeake Bay and its tributaries has increased over the
last 60 years (Kemp et al. 2005; Boesch et al. 2007). These
hypoxic episodes may affect species that use estuarine habitats
during summer to grow and prepare for spawning. For exam-
ple, Chesapeake Bay supports a large population of Atlantic
Croakers Micropogonias undulatus and is considered an
important nursery and foraging area for the East Coast stock
(ASMFC 2010). Atlantic Croakers consume primarily benthic
prey in summer and use these energy sources to prepare for
fall spawning (Barbieri et al. 1994; Nye et al. 2010). With the
increasing occurrence and extent of summer hypoxia, critical
habitat needs of Atlantic Croakers may coincide with hypoxic
episodes, thereby affecting population productivity from an
energetic standpoint by reducing prey availability or forcing
a shift in fish spatial distribution to less-favorable habitats
(e.g., suboptimal salinity or temperature ranges) that limit
growth and reproduction. Furthermore, exposure to hypoxic
waters for as little as 3–7 d can affect biochemical pathways
and can reduce the production of important maturation hor-
mones, potentially leading to decreased stock productivity
(Rahman and Thomas 2007).

The effects of hypoxia can occur at the individual level and
at the population level. At the level of the individual fish,
habitat shifts in response to hypoxia may be accompanied by
changes in the composition of available prey, the abundance of
prey, or both, which in turn can lead to alterations in the
allocation of food energy. Energy that is needed for growth
or reproduction may be allocated to maintenance metabolism
if hypoxia-displaced fish are unable to forage in favorable
environments. This reallocation of energy resources to fish
maintenance metabolism may affect population-level
responses by reducing growth and reproductive potential
(i.e., indirect effects). As a result, stock assessment models
that ignore the effects of hypoxia may yield overly optimistic
production estimates for hypoxia-exposed populations, parti-
cularly if environmentally invariant fecundity and growth are
assumed.

Laboratory studies of Atlantic Croakers indicate that
hypoxia serves as an endocrine disruptor, reducing the produc-
tion of the yolk precursor vitellogenin as well as affecting
other biochemical pathways (Wu et al. 2003; Thomas et al.
2006; Thomas and Rahman 2009, 2012). Thomas et al. (2006)
corroborated their laboratory results with an examination of
field-captured Atlantic Croakers and showed that the mean
gonadosomatic index (GSI) and number of fully developed
oocytes were significantly lower in hypoxia-exposed fish than
in fish collected from normoxic environments; this finding
prompted concern about hypoxia’s effects on stock productiv-
ity. More recently, a reduction of at least 20% in the number of

mature eggs and sperm was observed for Atlantic Croakers
collected from hypoxic sites in comparison with conspecifics
that were collected from normoxic reference sites (Thomas
and Rahman 2012), thus providing evidence of the sublethal
effects of direct hypoxia exposure and a decrease in Atlantic
Croaker reproductive potential within the Gulf of Mexico.

During summer, Chesapeake Bay tributaries exhibit a range
of DO conditions that can be used to test hypotheses about the
sublethal and indirect effects of hypoxia on fishes. We
hypothesized that Atlantic Croakers inhabiting systems with
summer hypoxia would exhibit lipid storage patterns differing
from those of fish found in normoxic systems. Changes in
lipid allocation among fish tissues may result either from
altered energetic intake or from the disruption of biochemical
pathways related to gonadal development. Altered energy
intake can occur via one of three possible mechanisms: (1)
energetic intake can increase due to predation on hypoxia-
exposed benthos; (2) energetic intake can decrease due to
competition for food resources in normoxic areas that are
colonized by individuals displaced from hypoxic waters; or
(3) energetic intake can decrease in hypoxic areas due to a
reduction in benthic productivity or organism quality
(Sturdivant et al. 2013). Through the first mechanism, fish
that feed opportunistically on distressed benthic prey may
either maintain or deplete their energy reserves depending on
the energetic value of the consumed prey (Pihl et al. 1992).
Alternatively, fish may obtain higher energy reserves if the
distressed benthic prey contain sufficient protein and lipid to
support fish growth and reproduction (Davis and Arnold
1997).

The second and third hypothesized mechanisms lead to
changes in energy allocation between somatic and gonadal
tissues because energy intake is reduced through increased
competition, decreased prey availability, or decreased prey
energy content. As a result, fish that experience low energy
intake are hypothesized to forego the accumulation of
energy reserves for spawning and may instead use stored
lipids and proteins to maintain metabolism or to grow. Fish
that undergo alterations in biochemical pathways as a result
of hypoxia exposure may retain lipid-rich compounds in
their somatic tissues because those compounds are blocked
from reaching gonadal tissues (Thomas and Rahman 2009).
Therefore, we expected that the ovarian lipid content in
female Atlantic Croakers collected during late summer in
estuaries exhibiting severe hypoxia would be lower than the
ovarian lipid content in fish from estuaries with less-severe
or no hypoxia. Variation in the tissue-specific lipid content
of fish from hypoxic systems should be evaluated against
observed patterns in fish from normoxic systems. Such
comparisons are warranted because observed changes in
energy storage may be ascribed to indirect effects of
hypoxia as the fish undergo seasonal preparation for spawn-
ing. To test these hypotheses, we examined the tissue-spe-
cific energy content of female Atlantic Croakers and
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assessed impacts on reproductive potential by comparing the
responses of fish from three Chesapeake Bay tributaries (the
James, York, and Rappahannock rivers) that exhibit different
DO conditions during summer.

METHODS
Fish collection and processing.—Adult Atlantic Croakers

were collected by using a 9.1-m bottom trawl towed from an
8.5-m research vessel; sampling protocols were from an
established fish monitoring program that has been operating
in Virginia tributaries consistently since 1997 (hereafter,
“trawl survey”; Tuckey and Fabrizio 2013). The relative
abundance and distribution of adult Atlantic Croakers in
each tributary were determined from routine trawl survey
observations that consisted of samples from each tributary
mouth to approximately 64 km upstream near the freshwater
interface. Stations that were sampled by the trawl survey
included a mixture of fixed and random sites. The number of
fixed stations sampled was eight in the James River, eight in
the Rappahannock River, and nine in the York River. The
number of random stations (stratified by depth and region)
was 14 in the James River, 14 in the Rappahannock River, and
13 in the York River. Thus, a total of 22 stations were sampled
in each tributary during each month. These monthly data were
used to examine the relative abundance and spatial distribution
of Atlantic Croakers from May to August 2011, encompassing
(1) the period in which tissue samples were obtained for this
study and (2) the periods prior to and during hypoxic
conditions.

In each river and for each treatment period (i.e., before
hypoxia [May] and during hypoxia [July]), at least 20 adult
female Atlantic Croakers were retained for additional ana-
lyses. If too few Atlantic Croakers were available from the
hypoxic region, which was often the case, sites immediately
upstream of the hypoxic region were targeted. Sampling
upstream of hypoxic regions increased the likelihood that the
fish had moved through or around the hypoxic region (i.e.,
were not recent arrivals from nearby Chesapeake Bay).
Because hypoxia does not occur in the James River, Atlantic
Croakers from this system were collected from areas located at
a similar distance from the river mouth as fish sampled from
the York and Rappahannock rivers (Figure 1). Fish in the
James River were collected on May 6 and 7 (before hypoxia
was observed in the York and Rappahannock rivers) and again
on July 18–20 (coinciding with the hypoxic period in the other
two tributaries). In the York River, fish samples were collected
on May 18, May 19, and June 3 (before hypoxia) and on July
25 and August 3 (during hypoxia). Sampling for fish in the
York River continued into early June and August due to very
low catches of females. Atlantic Croakers in the
Rappahannock River were collected on May 13, 17, and 18
(before hypoxia) and again on July 14 (during hypoxia).

Fish tissue processing.—Female Atlantic Croakers larger
than 240 mm TL were retained to ensure the sampling of
sexually mature fish (Barbieri et al. 1994). Upon capture, all
specimens were placed on ice and returned to the laboratory
for processing; TL, total weight (TW), gonad weight (GW),
liver weight (LW), and somatic weight (SW; excluding
stomach contents, otoliths, and ovaries) were recorded for
each fish. All weights are reported as wet weights unless
specified otherwise. We collected otoliths for age
determination, and stomach contents were preserved and
later identified to gross taxonomic groupings (e.g.,
crustaceans, polychaetes, and bivalves).

Because fecundity tends to increase with fish age, the age
composition of Atlantic Croakers was examined to ensure that
similar-aged females were compared among rivers and
between treatment periods. Sagittal otoliths were sectioned
and polished under transmitted light, and ages were assigned
by two independent readers. When ages did not agree, a third

FIGURE 1. Map of the study area, showing sites that were sampled in the
James, York, and Rappahannock rivers during May–August 2011. Arrows
indicate the locations of water quality profiling stations (Virginia
Estuarine and Coastal Observing System) in the York and Rappahannock
rivers; triangles represent extra tows that were used to collect Atlantic
Croakers.
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independent reader examined the otolith, and the final age was
that agreed upon by two of the three readers.

Bottom water quality conditions (water temperature, sali-
nity, and DO) in the James, York, and Rappahannock rivers
were measured at the end of each trawl tow by using a hand-
held meter (YSI Model 650 MDS). In addition, DO data for
the York and Rappahannock rivers were obtained from fixed
stations belonging to the Virginia Estuarine and Coastal
Observing System (VECOS; www3.vims.edu/vecos/), which
monitors hypoxia in these tributaries. The VECOS stations are
fixed moorings that perform hourly surface-to-bottom profiles
for the duration of their deployment (typically June–
September) and thus provide a continuous characterization of
water quality conditions throughout the summer.

Fish condition indices.—We used a combination of whole-
body condition indices and tissue-specific condition metrics to
evaluate the status of individual Atlantic Croakers. First, we
examined fish condition using the GSI, hepatosomatic index
(HSI), and relative condition factor (Kn). The GSI and HSI were
calculated as

GSI ¼ GW=SWð Þ � 100

and

HSI ¼ LW= SWð Þ � 100:

Relative condition factor was calculated as

Kn ¼ TW=TW0;

where TW′ is the predicted length-specific mean weight
(TW′ = [2 × 10–6]L3.30) based on measurements from 1,666
Atlantic Croakers captured in Chesapeake Bay and its
Virginia tributaries between 2010 and 2012.

Fish condition indices, which are typically calculated from
the lengths and weights of individual fish, are thought to
reflect nutritional state; however, such indices may be prone
to length-related biases (Gerow et al. 2005). In addition, some
condition indices are poorly correlated with energy density
(Trudel et al. 2005; Copeland et al. 2010; Schloesser 2015).
Therefore, we examined alterations in the condition and repro-
ductive preparedness of Atlantic Croakers from each tributary
by conducting proximate composition analysis of specific fish
tissues (Busacker et al. 1990). Somatic tissues (whole fish
minus the ovaries, otoliths, and stomach contents) were
ground by using a commercial food grinder and were dried
at 60°C until an asymptotic weight (i.e., dry weight) was
achieved. Individual dried samples were then homogenized
with a mortar and pestle and were shipped to Southern
Illinois University–Carbondale for proximate composition
analysis. Ovary tissue samples, which were dried first and
then ground by using a mortar and pestle, could only be
analyzed for lipid content due to the small amount of tissue

present, whereas somatic tissues were analyzed for full prox-
imate composition (e.g., percentages of lipid, protein, and
ash). Because carbohydrates are a minor constituent of fish
tissues (typically < 0.6%; Craig et al. 1978), we followed the
common practice of ignoring the carbohydrate fraction.

Statistical analyses.—Diet data were summarized by using
prey frequency of occurrence and prey numeric composition
in the stomach contents of Atlantic Croakers that were
collected before and during hypoxia; this was done to
assess potential dietary changes resulting from exposure to
low DO or from hypoxia-related shifts in individual spatial
distribution. Numeric composition was estimated by
counting whole prey items and adding estimated
proportions for partially digested prey (e.g., 0.5 for half of
an organism). The use of estimated proportions likely
underestimated prey consumption and is a more
conservative approach than assuming that the entire
organism was consumed. Stomach contents of Atlantic
Croakers from each tributary were analyzed by using a
cluster estimator to account for the nonindependence of fish
that were captured in the same trawl tow (Buckel et al. 1999).
The a priori hypothesis that diets differed between Atlantic
Croakers collected before a hypoxic event and those captured
during the hypoxic event was evaluated by using the adonis
function in the R package “vegan” (R Development Core
Team 2014; Oksanen et al. 2015). The adonis function is a
nonparametric multivariate ANOVA that resembles analysis
of similarity but is less sensitive to differences in dispersion
(Anderson 2001).

Proximate composition results for protein, ash, and lipid
were converted from percentages to grams dry weight (whole
carcass minus ovaries, otoliths, and stomach contents) and are
reported on a per-gram basis to account for differences in body
size and the known decrease in water mass per unit protein
(and ash) that occurs in larger fish (Breck 2008, 2014).
Conducting analyses on a mass basis rather than a percentage
basis accounts for this size-related change and produces better
estimates of fish energy density (Breck 2008, 2014). Condition
indices and standardized proximate composition results were
analyzed with generalized linear mixed models by using
Bonferroni-adjusted significance values (α = 0.05) to account
for multiple comparisons. The appropriate error structure of
the model (i.e., lognormal) was determined by examining the
distribution of the response variables (e.g., lipid or protein),
the fit of competing models (as evaluated with Akaike’s infor-
mation criterion), and patterns in the residuals. Factors that
were examined included the fixed effect of treatment period
(i.e., before or during hypoxia exposure) nested within tribu-
tary and the random effect of tow. Tributary was treated as a
fixed factor.

Additionally, to examine differences in water characteris-
tics among tributaries, bottom water temperature and salinity
were compared among tributaries and months by using general
linear models that included a tributary × month interaction
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term. All statistical analyses were conducted in R software or
in the Statistical Analysis System version 9.3 (SAS Institute,
Cary, North Carolina).

RESULTS

Water Quality in Virginia Tributaries
Virginia tributaries to Chesapeake Bay displayed monthly

differences in hypoxia (Figures 2–4). The proportion of rou-
tine trawl stations (excluding supplemental stations, which
were sampled to capture female Atlantic Croakers) exhibiting
hypoxia during May–August 2011 was greatest in the
Rappahannock River (hypoxia was observed at 28% of the
trawl stations) followed by the York River (9% of trawl
stations); no stations in the James River were hypoxic
(Figure 2). Hypoxic episodes in the York River lasted only
1–3 d at a time and extended 3 m upward from the river
bottom into the water column (mild periodic hypoxia;
Figure 4). In the Rappahannock River, hypoxia persisted for
most of the summer except for five 2-d periods; in this
system, hypoxic waters extended 8 m from the bottom in
some areas (Figure 4) and affected approximately 32 km of
the river. After the passing of Hurricane Irene on August 27,
2011, the DO level in the York River remained normoxic;
however, DO in the Rappahannock River fell below 2 mg/L
on September 8. As expected, hypoxia was not observed in
the James River during the study (lowest observed DO =
4.62 mg/L). The patterns of hypoxia observed in 2011 were
consistent with annual historic patterns in these tributaries
(Figure 2, inset), with (1) a greater frequency of trawl

stations exhibiting hypoxia in the Rappahannock River than
in the York River and (2) no hypoxia in the James River
during the last decade.

Bottom water temperatures averaged across all sites were
significantly different among tributaries (F2 = 25.9, P <
0.001) and among months (F3 = 380.4, P < 0.001); the
warmest mean temperatures were observed during July and
August (Figure 3). Mean bottom water temperature was
lowest in the James River (mean = 24.5°C, SD = 3.98),
followed by the York River (mean = 24.9°C, SD = 4.17);
the warmest water was observed in the Rappahannock River
(mean = 25.4°C, SD = 3.60). Salinity from all sampled sites
also differed significantly among tributaries (F2 = 13.0, P <
0.0001): the York River had the highest salinity (mean =
13.5 psu, SD = 5.45), the James River displayed intermedi-
ate salinity (mean = 11.6 psu, SD = 7.27), and the
Rappahannock River exhibited the lowest salinity (mean =
10.0 psu, SD = 3.83).
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FIGURE 2. Proportion of trawl survey stations that exhibited hypoxia (dis-
solved oxygen concentration ≤ 2.0 mg/L) in the York and Rappahannock
rivers during each month in 2011 and during each year (inset: 2001–2011).
Data for the James River are not shown because hypoxic conditions were not
observed there.

FIGURE 3. Bottom water temperature (°C), salinity (psu), and dissolved
oxygen (DO; mg/L) in the James, York, and Rappahannock rivers during
May–August 2011 (dots = median; boxes = quartiles; whiskers = 5th and
95th percentiles; open circles = outliers [extreme values]). The horizontal
dashed line in the lower panel indicates hypoxic conditions (DO ≤ 2.0 mg/L).
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Atlantic Croaker Distribution
Most of the adult Atlantic Croakers (>240 mm TL)

obtained from routine trawl survey sampling were collected
in the York River (N = 216 adults), followed by the James
River (N = 140 adults) and Rappahannock River (N = 110
adults). In the York River, we collected 7.5% of the Atlantic
Croakers from hypoxic waters, whereas 22.7% of the fish
collected in the Rappahannock River were from hypoxic
waters (Figure 5). Mean water temperature at the Atlantic
Croaker capture sites differed by less than 0.2°C; the average
mean water temperature was 22.8°C (SD = 4.14) in the York
River, 23.0°C (SD = 4.51) in the James River, and 22.9°C

(SD = 3.81) in the Rappahannock River. Average water
depths were also similar, with positive catches of Atlantic
Croakers occurring in water depths of 7 m (SD = 3.22) in the
York River, 9.6 m (SD = 5.39) in the Rappahannock River,
and 10.4 m (SD = 4.49) in the James River. Salinities where
adult Atlantic Croakers were found varied among rivers and
were lowest in the Rappahannock River (mean salinity = 9.5
psu, SD = 2.66), highest in the York River (15.2 psu, SD =
3.80), and intermediate in the James River (12.5 psu, SD =
7.86). Atlantic Croakers were distributed throughout the
sampled portions of each river in May 2011 (Figure 6).
Over the course of the study period and as hypoxia

FIGURE 4. An example of weekly measurements of bottom dissolved oxygen concentration (mg/L) in (A) the York River (Virginia Estuarine and Coastal
Observing System [VECOS] Station YRK004.26) from July 27 to August 3, 2011; and (B) the Rappahannock River (VECOS Station RPP021.36) from July 28
to August 4, 2011. Similar data for the York River during June 1–October 19, 2011, and for the Rappahannock River during May 26–October 10, 2011, are
available from VECOS (web2.vims.edu/vecos/).
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developed in the York and Rappahannock rivers, adults were
found upriver in the Rappahannock River and remained in
those areas through July (Figure 6). In the York River, some
adults were found upriver, whereas others occupied the lower
river in the vicinity of hypoxic waters (Figure 6). The dis-
tribution of Atlantic Croakers in the James River remained
similar over the study period, as fish were located throughout
the river (Figure 6).

Atlantic Croaker Characteristics
We retained 124 female Atlantic Croakers from 52 tows

for use in proximate composition, condition, and diet ana-
lyses (Table 1). Fish collected in the James and York rivers
before hypoxia were similar in size to those collected during
hypoxia, whereas fish captured from the Rappahannock River
during hypoxia were significantly larger than those captured
before hypoxia (mean TL difference = 25 mm; F = 5.24, P <
0.001).

The mean age of Atlantic Croakers did not significantly
differ among tributaries or between time periods (F = 2.22,
P = 0.06), indicating that the fish were randomly mixed among
rivers. Therefore, we did not consider age in any additional
statistical models.

Diet
Diet indices (i.e., frequency of occurrence and numeric com-

position) for female Atlantic Croakers showed that prey con-
sumption patterns before hypoxia were similar to the patterns
demonstrated during hypoxia. Diets consisted of 13 prey cate-
gories and an additional category encompassing unidentifiable
material (UID; Figure 7). In May, diets of fish in the James River
were dominated by polychaetes, amphipods, bivalves, shrimp,
and isopods; similar prey items were consumed during July

FIGURE 5. Adult Atlantic Croaker CPUE (fish/m) versus dissolved oxygen
concentration (mg/L) in the Rappahannock, York, and James rivers during
May–August 2011.

FIGURE 6. Capture locations of adult Atlantic Croakers in relation to dis-
solved oxygen (DO) concentration (mg/L) in the (A) Rappahannock River,
(B) York River, and (C) James River during May and July 2011.
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(numeric contribution: F = 1.685, P = 0.131). Diets in the York
River were also similar between normoxic and hypoxic periods
(numeric contribution: F = 0.970, P = 0.455). During May in the
York River, diets were dominated by polychaetes, shrimp,
bivalves, amphipods, sea squirts, and crabs. During the hypoxic
period (July), sea squirts increased in importance as prey items
(Figure 7). The data set for the Rappahannock River failed the
test for homogeneity of group dispersion (F = 5.03, P = 0.039;
betadisper function in vegan); as a result, no statistical tests were
conducted to compare diets between pre-hypoxic and hypoxic
periods. However, qualitative inspection revealed that diets in
the Rappahannock River during May consisted of bivalves,
polychaetes, shrimp, and sea squirts, whereas the July diets
included more amphipods and midges, along with polychaetes,
shrimp, and bivalves. Comparisons of prey frequency of occur-
rence (data not shown) between the two periods yielded results
similar to those based on numeric composition: diets did not

differ between normoxic and hypoxic periods in the James and
York rivers, and homogeneity of group dispersion was not met
for the Rappahannock River.

Condition Metrics
Mean Kn of Atlantic Croakers was variable and tended to

show a slight, nonsignificant increase between normoxic and
hypoxic periods within rivers (Table 1; Figure 8).

The GSIs for fish collected in the tributaries at the start of
the study averaged 0.6%; the overall mean GSI increased
significantly during July (F1, 79 = 25.73, P < 0.01). The
mean GSI of York River fish increased significantly (t79 =
4.83, Bonferroni-adjusted P < 0.01), whereas the mean GSIs
of fish in the James River (t79 = 2.33, Bonferroni-adjusted P =
0.33) and the Rappahannock River (t79 = 1.51, P = 1.0) did not
change.

FIGURE 6. Continued.
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TABLE 1. Number of female Atlantic Croakers that were collected from each Chesapeake Bay tributary during each treatment period in 2011; and mean (SE in
parentheses) age, TL, weight, hepatosomatic index (HSI), gonadosomatic index (GSI), relative condition factor (Kn), and proximate composition (percent dry weight
[DW]) of fish collected before and during hypoxic conditions in the York and Rappahannock rivers. Because hypoxia was not observed in the James River, data from
that river are used as a reference for normoxic conditions. Lowercase letters indicate significant differences in a given factor before versus during hypoxia.

James River York River Rappahannock River

Factor Before During Before During Before During

N 20 23 20 18 19 24
Age (years) 5 (1.2) 4 (1.1) 4 (1.0) 4 (1.0) 4 (0.8) 4 (1.3)
TL (mm) 255 (13.6) z 255 (8.3) z 263 (27.1) z 264 (18.4) z 256 (11.9) z 280 (32.4) y
Weight (g) 208 (36.2) 215 (32.7) 239 (105.4) 229 (49.5) 222 (36.7) 325 (138.7)
HSI (%) 2.1 (0.2) z 1.6 (0.1) z 1.8 (0.1) z 1.8 (0.1) z 2.5 (0.1) y 1.8 (0.1) z
GSI (%) 0.6 (0.0) z 1 (0.2) z 0.6 (0.0) z 1.7 (0.3) y 0.5 (0.0) z 0.8 (0.1) z
Kn 97 (1.3) 101 (2.1) 97 (1.7) 96 (2.1) 103 (1.2) 106 (1.5)

Proximate composition (% DW)
Ovarian lipid 6 (0.6) z 9 (1.3) z 6 (0.5) z 14 (1.4) y 6 (0.2) z 7 (0.9) z
Ovarian water 82 (0.2) 81 (0.9) 82 (0.2) 76 (1.6) 81 (0.3) 80 (0.7)
Somatic lipid 17 (0.8) z 31 (2.1) y 26 (1.2) z 33 (1.8) z 26 (1.2) z 35 (1.1) z
Somatic water 76 (0.3) 74 (0.6) 75 (0.4) 72 (0.6) 74 (0.6) 69 (0.7)
Somatic protein 57 (0.9) z 48 (1.9) y 56 (1.3) z 51 (2.4) y 53 (1.1) z 48 (1.3) y
Somatic ash 20 (0.7) z 20 (0.9) z 19 (0.9) z 17 (0.9) z 17 (0.8) z 13 (0.5) y

FIGURE 7. Diet composition for adult female Atlantic Croakers captured in the James, York, and Rappahannock rivers before and during hypoxia in 2011:
(A) prey frequency of occurrence and (B) numeric contribution of prey taxa (UID = unidentifiable material). Because hypoxia was not observed in the James
River, data from that river are used as a reference for diets consumed under normoxic conditions.
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Prior to the onset of hypoxia, Atlantic Croakers col-
lected from the Rappahannock River had significantly
higher mean HSIs than fish from the James and York rivers
(F4, 76 = 6.85, P < 0.01; Figure 8). During hypoxia, the
mean HSI decreased significantly (F1, 76 = 22.86, P < 0.01)
for fish in the Rappahannock River (28% decrease; t76 =
5.54, Bonferroni-adjusted P < 0.01), whereas the mean
HSIs of York River and James River fish did not change
significantly relative to pre-hypoxia values (Bonferroni-
adjusted P > 0.05).

Proximate Composition
Atlantic Croaker ovaries showed significant increases in

lipid accumulation from May to July (F1, 79 = 33.08, P <
0.01; Table 1; Figure 8). We detected a significant positive
correlation between GSI and ovarian lipid content
(Spearman’s rho = 0.70, N = 119, P < 0.004), indicating that
higher GSIs reflected increases in lipid content. The temporal
increase in mean ovarian lipid content differed among tribu-
taries (F4, 79 = 6.40, P < 0.001); a significant increase was
observed only for the York River (t79 = 5.70, Bonferroni-

FIGURE 8. Mean (±95% confidence interval) relative condition factor (Kn), gonadosomatic index (GSI; %), hepatosomatic index (HSI; %), ovarian lipid
content (mg/g), somatic lipid content (g/g), somatic protein content (g/g), and somatic ash content (g/g) of adult female Atlantic Croakers collected from the
James, York, and Rappahannock rivers before (open symbols) and during (filled symbols) hypoxic conditions in 2011. Because hypoxia was not observed in the
James River, data from that river are used as a reference for normoxic conditions. Asterisks indicate metrics that were significantly different between the pre-
hypoxic period and the hypoxic period.
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adjusted P < 0.01). Before the onset of hypoxic conditions in
the York and Rappahannock rivers, fish had a similar mean
ovarian lipid content of 60 mg/g (Table 1; Figure 8). Under
normoxic conditions in the James River, mean ovarian lipid
content increased by 39% between periods. The mean ovarian
lipid content for York River females was 50% greater than that
observed for females from the normoxic James River. The
mean ovarian lipid content in Rappahannock River fish during
hypoxia was 24% greater than the lipid content measured for
the pre-hypoxia period but was significantly less than that
observed in York River females during hypoxia (F = 29.45,
P < 0.01; Table 1; Figure 8).

Mean lipid content of somatic tissues from adult Atlantic
Croakers increased significantly in the James River from May
to July (t77 = 5.36, Bonferroni-adjusted P < 0.01; Table 1;
Figure 8). In May, somatic lipid content differed among the
tributaries such that James River fish contained significantly
less lipid than fish from the York and Rappahannock rivers
(F1, 77 = 32.46, P < 0.01; Table 1; Figure 8). During July, the
mean somatic lipid content of adults collected in all three
tributaries ranged from 0.31 to 0.35 g/g.

Mean protein content of somatic tissues from Atlantic
Croakers decreased significantly (F1, 77 = 40.15, P < 0.01)
during the study, but there was no significant effect of tribu-
tary (F4, 77 = 1.15, P = 0.34; Table 1; Figure 8). A significant
decrease (t77 = 11.78, Bonferroni-adjusted P < 0.01) in the ash
content of tissues was observed in fish from the Rappahannock
River (Figure 8).

DISCUSSION
We observed that lipid allocation to ovaries in adult female

Atlantic Croakers was consistent with predictions resulting
from laboratory-based studies of the sublethal and indirect
effects of hypoxia. The hypothesized outcome—that female
Atlantic Croakers from a system characterized by severe
hypoxia (Rappahannock River) would exhibit lower mean
ovarian lipid content than females from a mildly hypoxic
system (York River)—was supported. We also observed that
within the Rappahannock River, catches of Atlantic Croakers
were greater from normoxic habitats than from hypoxic habi-
tats, indicating that habitat shifts can occur even for a rela-
tively hypoxia-tolerant species (Bell and Eggleston 2005;
Craig and Crowder 2005).

Throughout the study period, DO in the James River
remained above 4 mg/L—a critical level below which fish
CPUE and fish species diversity in Chesapeake Bay decline
(Buchheister et al. 2013). Therefore, DO levels in the James
River can be considered normal conditions that support
Atlantic Croaker feeding and preparation for spawning; as
such, the James River estuary serves as a suitable system
with which to make comparisons.

Development and persistence of hypoxia in Virginia tribu-
taries of Chesapeake Bay are associated with variation in

longitudinal salinity gradients (e.g., gravitational circulation;
Kuo and Neilson 1987). The salinity difference between the
river mouth and 30 km upriver is greatest in the James River,
smallest in the Rappahannock River, and intermediate in the
York River. Gravitational circulation resulting from the sali-
nity gradient replenishes oxygen in bottom waters of the
James River but is insufficient for consistent oxygen replen-
ishment in the York River or Rappahannock River (Kuo and
Neilson 1987). In the York River, hypoxia is further regu-
lated by (1) the spring–neap tidal cycle that affects water
column stratification and (2) local weather conditions that
contribute to stratification or vertical mixing (Haas 1977).
Kuo and Neilson (1987) found that observed differences in
DO level between the York and Rappahannock rivers were
attributable to the entrainment of lower-quality (i.e., hypoxic)
water from main-stem Chesapeake Bay into the
Rappahannock River. Thus, during years when significant
hypoxia exists in Chesapeake Bay, lower DO can be
expected in the Rappahannock River; indeed, we have
observed this phenomenon over multiple years (our unpub-
lished data). Similarly, results from the Chesapeake Bay
Water Quality Monitoring Program (Chesapeake Bay
Program 2013) corroborated this expectation: the highest
summer volume of hypoxic water since 1985 was observed
during 2011 (prior to the arrival of Hurricane Irene), match-
ing the patterns of hypoxia measured within the
Rappahannock River during our study. Given the unique
hydrology and physical forcing that underlie the DO condi-
tions in each of these tributary systems, impacts on demersal
fish habitat within the York and Rappahannock rivers are
likely to persist beyond the specific year of our study.

Data on bottom DO at our trawl survey stations and at
the VECOS monitoring stations suggest that benthic produc-
tivity in the Rappahannock River was likely reduced during
2011 due to the duration and extent of hypoxia. Previous
studies in the Rappahannock River have found significant
reductions in benthic community biomass at the same DO
levels we observed (Seitz et al. 2009; Sturdivant et al.
2013). The intensity and duration of hypoxia directly affect
benthic productivity (Baird et al. 2004; Long and Seitz
2009; Sturdivant et al. 2013), and the single best predictor
of benthic organism density and diversity in Chesapeake
Bay is DO (by depth), which outperforms other important
habitat characteristics such as sediment type and salinity
(Seitz et al. 2009). Hypoxia lasting only a few hours to a
few days increases the transfer of trophic energy to higher
trophic levels (e.g., fish), whereas longer-lasting hypoxia
results in the loss of benthic production and a shift toward
microbial production (Baird et al. 2004; Powers et al. 2005;
Long and Seitz 2009). The 2011 hypoxic event that persisted
for more than 10 weeks in the Rappahannock River likely
disrupted the system’s normal benthopelagic food web.
Recovery of benthic communities after hypoxic events com-
monly occurs due to the recruitment of invertebrates from
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adjacent normoxic habitats; however, severe hypoxic events
may result in only partial recovery, with subsequent long-
term implications for fish production (Wu 2002; Long and
Seitz 2009). Additional research is needed to evaluate the
energy content of benthic prey taxa that recolonize habitats
after hypoxia; this would help to determine how changes in
food quality and quantity could affect fish growth and
reproduction over the long term.

In our study, indirect exposure to hypoxia apparently had
no effect on the relative condition of Atlantic Croakers, con-
sistent with results from a previous study in which even direct
exposure to hypoxia did not affect Atlantic Croaker condition
(Thomas and Rahman 2009). Endocrine control of gonadal
recrudescence in Atlantic Croakers is highly susceptible to
hypoxia exposure, whereas other biochemical pathways
involved in physiological processes such as metabolism and
growth are regulated by additional genes (e.g., hypoxia-
inducible factors) that facilitate adaptation to low-DO condi-
tions (Thomas and Rahman 2009, 2012). These hypoxia-regu-
lated genes maintain the overall condition of Atlantic
Croakers, likely increasing survival but at a potential cost to
reproductive output.

The liver, which produces vitellogenin, is important for
lipid storage and processing in teleosts and is a probable site
of hypoxia interference (Thomas and Rahman 2009). Changes
in mean HSI observed in this study indicated a negative effect
of hypoxia on HSI; Atlantic Croakers collected in the
Rappahannock River showed a significant reduction in HSI
between the pre-hypoxia period and the hypoxic period,
whereas fish from the James and York rivers maintained
similar HSIs between May and July. If vitellogenesis was
disrupted in Rappahannock River fish, then energy stores
may have been shifted to other processes (e.g., maintenance
metabolism or growth). Other fish condition indices showed
no changes that would suggest better or worse condition of
Rappahannock River fish relative to James River or York
River fish, but we did observe a significant increase in the
size of Rappahannock River fish between May and July (no
difference in mean age), suggesting that lipid stores in these
fish were used for growth. However, movement of larger
Atlantic Croakers into the Rappahannock River from
Chesapeake Bay cannot be ruled out as a possible reason for
the greater fish size observed in that river during hypoxia. An
acoustic tagging study would be required to definitively eval-
uate Atlantic Croaker movement between Chesapeake Bay
and the upper Rappahannock River areas where we collected
Atlantic Croakers during July.

The observed increase in GSIs of Atlantic Croakers from
the three tributaries demonstrated that preparation for fall
spawning was underway. The GSIs of Atlantic Croakers col-
lected from the normoxic James River served as a reference
for the expected maturation processes in this species at this
time of year, assuming that no other deleterious conditions
(e.g., contaminants) affected ovary development in fish within

this tributary. Patterns in mean GSI of fish from the York and
Rappahannock rivers supported the hypotheses that (1) severe
hypoxia has a negative effect on reproductive potential, as was
previously observed during studies in the Gulf of Mexico
(Thomas et al. 2006; Thomas and Rahman 2009); and (2)
mild periodic hypoxia has a positive effect on reproductive
preparedness. We expected that Atlantic Croakers from the
James River would exhibit a higher gonadal lipid content
than Rappahannock River fish, yet their lipid levels were
similar. Our assumption that ovaries in James River females
were not affected by other potential endocrine disruptors
might not be valid, as the James River watershed is more
developed than the Rappahannock River and thus may contain
endocrine-disrupting compounds. However, to our knowledge,
an environmental survey of potential endocrine-disrupting
compounds has not been conducted for the James River or
any other river in Virginia. Such a survey appears to be
warranted and could provide additional insight on our
observed results.

Female Atlantic Croakers from the three tributaries experi-
enced an increase in mean lipid content of somatic and ovarian
tissues, but the magnitude of the increase differed depending
on the river and the tissue examined. Somatic lipid content
significantly increased in fish from the James River, whereas
mean ovarian lipid content significantly increased in females
from the York River, more than doubling during mild periodic
hypoxia. In the Rappahannock River, which exhibited severe
seasonal hypoxia, lipid stores in ovarian and somatic tissues
did not significantly differ between the pre-hypoxia period and
the hypoxic period. We hypothesize that a reduction in ovarian
lipid content will lead to a decrease in reproductive output for
those females (Brooks et al. 1997). For example, hypoxia-
exposed Atlantic Croakers from laboratory experiments and
field-based collections have demonstrated a significantly
reduced reproductive capacity (e.g., lower GSI, fecundity,
and reproductive hormone levels) in comparison with fish
obtained from normoxic conditions (Thomas et al. 2006;
Thomas and Rahman 2009, 2012). Even exposure to hypoxia
for short periods (i.e., hours) can have lasting reproductive
effects due to the alteration of biochemical pathways asso-
ciated with sex hormones (Cheek et al. 2009).

Habitat effects are a possible source of variability in lipid
accumulation and storage in Atlantic Croakers. Although we
found significant differences in bottom water temperature
among tributaries, the magnitude of differences among
Atlantic Croaker capture sites (0.2°C) is unlikely to be
biologically meaningful for a eurythermic species
(Miglarese et al. 1982). It is possible that the low-salinity
habitat occupied by Atlantic Croakers in the Rappahannock
River increased the metabolic demand for osmoregulation,
thereby reducing the amount of energy available for repro-
duction. However, the greatest salinity difference between
tributaries was 6 psu, which may not be large enough to
affect metabolic processes in Atlantic Croakers since they
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have been found in salinities ranging from 3 to 34 psu
(Miglarese et al. 1982).

The low ovarian lipid levels observed in female Atlantic
Croakers from the Rappahannock River may be due to direct
or indirect causes. Direct exposure to hypoxia could cause
endocrine disruption and result in lower lipid content of
ovarian tissues. Alternatively, low lipid levels in ovaries
could arise from dietary changes associated with reduced
abundance of prey items, decreased energy content of prey,
a change in diet composition, or a combination of such
factors. Results from our diet study were inconclusive, as
we observed only subtle changes in diet composition after
hypoxia developed. Because Atlantic Croakers are opportu-
nistic generalist feeders (Nye et al. 2010), they may be able
to compensate for changes in habitat quality and potential
shifts in prey availability, prey type, or energy content better
than species with specialized diets. However, studies that
have been conducted in the same Chesapeake Bay tributaries
and in other systems have documented hypoxia-mediated
changes in Atlantic Croaker diets (Powers et al. 2005; Long
and Seitz 2008). Hypoxia-induced changes in benthic com-
munities include a shift from longer-lived species (e.g.,
bivalves) to opportunistic species, such as polychaetes
(Long and Seitz 2009). We did observe a decrease in the
consumption of bivalves, but this occurred in all three tribu-
taries and therefore was probably associated with predation
pressure rather than hypoxia. Our study of Atlantic Croaker
diets would have benefited from a larger sample size, as we
used a cluster estimator to investigate diet composition; as a
result, the number of fish examined (n = 124 individuals) was
reduced to 47 cluster samples (24 clusters before hypoxia; 23
clusters during hypoxia), a sample size that may have been
insufficient to characterize differences in diet composition
for a generalist feeder. Increasing the frequency of sample
collection for diet analysis, perhaps to a weekly basis, would
also have aided in determining the potential effects of
hypoxia on foraging success. This would be particularly
informative for the York River, where hypoxia occurred on
neap tidal cycles rather than continuously throughout the
study period. Furthermore, examination of available prey
densities and measurement of individual prey energy content
would help to conclusively determine whether increased lipid
content of Atlantic Croaker tissues was due to increased
predation on energetically rich foods. It should be noted
that stomach content analyses characterize the recent diet
but do not account for prior feeding and energy intake that
would have been assimilated into specific tissues, which is
what we measured via proximate analysis. Therefore, prox-
imate composition provides a cumulative perspective on the
diet and may be a better indicator of feeding success.

Chesapeake Bay Atlantic Croakers residing in areas char-
acterized by prolonged seasonal hypoxia may be incapable of
achieving their full reproductive potential. In the Chesapeake
Bay region, hypoxia is typically observed from July to

September, and spawning typically occurs from August to
November (Barbieri et al. 1994). Because oocyte develop-
ment in Atlantic Croakers requires 10 weeks to complete
(Thomas et al. 2006), recovery from sublethal or indirect
effects of hypoxia may be possible only for individuals that
spawn at the very end of the season. Some fish may repro-
duce early if sufficient energy can be allocated to egg pro-
duction during May and June (prior to the onset of hypoxia);
however, the early spawning fraction of the population is
believed to be small (Barbieri et al. 1994). Thus, although
Atlantic Croakers may feed advantageously on stressed prey,
these fish may suffer reductions in reproductive output due to
the inability to complete gonadal recrudescence. Instead,
energy may be stored in other tissues (i.e., soma) and used
for maintenance metabolism, growth, and movement.
Hypoxic episodes within Chesapeake Bay are expected to
increase in association with global climate change (Boesch
et al. 2007; Najjar et al. 2010), resulting in (1) a greater
frequency of fish exposure to hypoxia or its indirect effects
and (2) subsequent potential changes in the reproductive
output of Atlantic Croakers.

Ecosystem-based approaches that quantify environmental
and climatic effects on fish stocks can provide managers with
more realistic predictions of fish production (Keyl and Wolff
2008). In particular, stock–recruitment relationships can be
improved by including environmental factors that affect
stock productivity. For instance, environmental conditions
that are encountered prior to spawning can affect the repro-
ductive performance of European Anchovy Engraulis encra-
sicolus (Pecquerie et al. 2009). Comprehensive models that
include variability in reproduction (e.g., weight- and age-
specific fecundity; Marteinsdottir and Begg 2002; Spencer
and Dorn 2013) are currently under development, and addi-
tional refinements should be considered. The clear effects of
hypoxia on Atlantic Croaker reproduction should be quanti-
fied in assessment models, as bias in the number (or weight)
of spawning females may lead to overestimation of the
spawning stock’s reproductive potential. This is particularly
important given the expected increase in the number of
hypoxia-affected coastal zones and the greater likelihood of
increased interactions between demersal fishes and impaired
habitats (Diaz and Rosenberg 2008). As a result, egg produc-
tion will be closely aligned with the energy density of adult
females but will not necessarily be predictable through esti-
mates of adult female biomass (Marshall et al. 1999).
However, energy density may also have limitations in pre-
dicting egg production since direct exposure to hypoxia lim-
its vitellogenin production at the cellular level. Furthermore,
our study suggests that the indirect effects of hypoxia may
also impair reproductive development. To this end, investi-
gations into biomarkers that can be used to evaluate fish
exposure to hypoxia are underway (Murphy et al. 2009;
Thomas and Rahman 2009). To fully characterize the effects
of hypoxia (including direct and indirect exposure) on
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reproduction, comprehensive studies of spawning-capable
fish are needed. Given new insights, stock assessment scien-
tists can evaluate various harvest strategies and can include
environmental-change-associated uncertainty in fecundity
estimates, thus providing robust estimates of recruitment
under changing climate and nutrient loading regimes.
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